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Preface

The first question anyone contemplating writing a book on continuum mechanics must ask
themselves is “Why?” There are numerous continuum mechanics books and many of them
are very good. I have learned from them and I have used some of them in teaching a course
on continuum mechanics. Yet, none seemed entirely suitable for the particular course that I
have taught for many years at Northwestern University. The course is one quarter, 10 weeks,
typically taught to first-year graduate students. Many of the students are PhD students in
fluid, solid, or structural mechanics. For them the course is meant to be a foundation for
more advanced and specialized topics. But there are also PhD students from geotechnical
and biomedical engineering, materials science, geology, and geophysics. In recent years, the
course has attracted many Master’s degree students who do not intend to go on for the PhD.
For these groups of students, the course is likely to be their only exposure to much of this
material.

To satisfy this diverse audience within a 10-week quarter, the course must be concise. It
must begin at a level suitable for students without a strong background in mechanics yet
be sufficiently general and advanced to be a solid foundation for students continuing in
mechanics. Most continuum mechanics books include chapters on elasticity, fluid mechanics,
viscoelasticity, and other applications to particular material behaviors. In a 10-week quarter
there is time to treat only the barest minimum of this material. At Northwestern and, I am sure,
at many other universities, students go on to take courses devoted to these subjects and there
are good books devoted to them. On the other hand, with the development of computational
mechanics and advanced materials, the diversity and complexity of constitutive models that
may be encountered in research is immense and growing. Although this diversity makes a
thorough treatment of the subject impossible in one quarter, it makes a solid background in
the fundamentals of continuum mechanics even more essential.

These requirements might seem to relegate a book based on the course to a niche. Yet
I became convinced that there is a need for such a book not only for students but also for
practitioners. I came to this opinion through the encouragement of many students who used
the notes on which the book is based and feedback from colleagues at other universities. I view
the book as the “baby bear” of continuum mechanics books: neither too long nor too short,
neither too advanced nor too elementary, neither too superficial nor too in-depth. Although it
is based on a one-quarter course, it would be suitable for a one-semester course by expanding
the treatment of some material. Possibilities are suggested by some of the examples and
exercises. In teaching the course and writing the book I do not attempt to be mathematically
rigorous. Instead, I try to emphasize operational definitions and doing “what comes naturally”
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as suggested by the notation. I believe that the notation can be an important aide for both
beginning and advanced students to gain confidence and as a foundation for more in-depth
understanding.

The goals of the course are a basic understanding of the following: tensors and tensor
calculus in Cartesian coordinate systems and in coordinate-free form; stress as a tensor; the
difference between material and spatial descriptions of motion; the measures of strain and
deformation and deformation rate for arbitrary deformation magnitudes; the formulation of
equations describing balance of mass, momentum, and energy in their various forms; and the
introduction of constitutive behavior.

After reading the book, students should be familiar with and be able to do the following: use
index notation for vectors and tensors; calculate components of tensors in different Cartesian
coordinate systems; use and manipulate the stress tensor and explain the meaning of its
components; manipulate and describe the relations among different measures of strain and
deformation; derive and explain equations describing the balance of mass, momentum and
energy; and, perhaps most importantly, read and understand papers and texts on advanced
continuum mechanics.

The book is divided into five parts: Mathematical Preliminaries; Stress; Motion, and Defor-
mation; Balance of Mass, Momentum, and Energy; and Ideal Constitutive Relations. Although
the first part is preliminary, it comprises nearly a third of the length. It introduces notation and
forms a foundation for the remainder of the book. Many of the exercises derive results that are
used later in the book. In teaching the course, I resist the urge to move rapidly through this
material. Although some of the material is elementary the approach is likely to be new even
to readers who have some familiarity with these topics.

One of the most pleasurable tasks of writing a book is to thank the many people who provided
help and support, although I cannot mention them all by name. As usual, it is necessary to
emphasize that none of them are responsible for any shortcomings of the book in fact, concept,
or clarity. First of all, I want to thank my daughter Jean who suffered working for her father one
summer to translate my handwritten notes into LaTex and to prepare the first drafts of figures.
I am indebted to my teachers at Brown University, especially Professor Jacques Duffy who
taught me my first course in continuum mechanics, Professor Ben Freund, and Professor James
Rice (now at Harvard) who was my undergraduate and PhD advisor and continues to teach
me mechanics every time I see him. The students who took my class exposed my incomplete
understanding, improved the clarity of the exposition, and provided both encouragement and
criticism. Steve Sun and Miguel Bessa read the draft and provided corrections and helpful
comments. The continuum mechanics class in the Fall of 2013 responded enthusiastically to
my offer to earn points by finding misprints, errors, and unclear passages. I especially want
to thank Aaron Stebner of the Colorado School of Mines who used the draft for a course on
continuum mechanics and provided invaluable feedback on the text and problems. Tom Carter,
my editor, was unfailingly helpful, encouraging, and responsive. I am grateful to Northwestern
University for providing a stimulating environment for more than 30 years and for a leave of
absence during which I did much of the preparation of the book. Finally, I do not have words
to express thanks for the support of my family in everything I do.



Nomenclature

Notation:
Bold-faced upper case letters refer to (mainly second-order) tensors.
Bold-faced lower case letters refer to vectors. The magnitude of a vector is denoted by the

same letter in italics or |… |.
Subscripts are denoted i through v and range over 1, 2, and 3. Upper case subscripts and

Roman numerals refer to principal values.
Greek subscripts 𝛼, 𝛽, etc., range over 1 and 2.

𝛼 thermal diffusivity
𝛼, 𝛽 scalars
𝛾 shear
𝛿ij Kronecker delta
𝜖ijk permutation symbol
𝜺 infinitesimal (small) strain
𝜂 dynamic viscosity
𝜃 temperature
Θ bulk viscosity
𝜿 thermal conductivity tensor
𝜆 principal value (eigenvalue)
𝜆, 𝜇 Lamé constants
Λ stretch ratio
𝜇 friction coefficient
𝜇 shear modulus
𝜇 shear viscosity
𝝁 unit vector in principal direction (eigenvector)
𝜈 Poisson’s ratio
𝜉 non-dimensional length
𝜌 mass density in current configuration
𝜌0 mass density in reference configuration
𝝈 Cauchy stress
𝝈′ deviatoric Cauchy stress
�̂� rotationally invariant Cauchy stress
�̄�ij Cauchy stress in the reference configuration
𝝉 Kirchhoff stress



xvi Nomenclature

𝝓(X, t) motion
𝛀 infinitesimal rotation tensor
a area in current configuration
A area in reference configuration
a(x, t) acceleration, Eulerian description
A(X, t) acceleration, Lagrangian description
A orthogonal tensor
(x, t) a vector or scalar quantity proportional to the mass
b body force per unit mass
b0 body force per unit mass in the reference configuration
B left Cauchy–Green tensor
B−1 Cauchy deformation tensor
B, B−1 Finger tensors
cL, cs bulk (dilatational) and shear wave speeds
cp, cv specific heats at constant pressure and volume
cpq cofactor
C Green or right Cauchy–Green deformation tensor
Cijkl components of elastic modulus tensor
D rate of deformation tensor
E total energy
E Young’s modulus
e1, e2, e3 orthonormal base vectors
eA Almansi strain
E material strain tensor
EG Green–Lagrange strain tensor
E(1) Biot strain tensor
E(ln) logarithmic strain tensor
f (Λ) scale function for material strain
F deformation gradient tensor
g(𝜆) scale function for spatial strain
h height, thickness
H−1 inverse of tensor H
I identity tensor
I1, I2, I2 principal invariants
IE internal energy
J |𝜕x∕𝜕X| = |𝜕xi∕𝜕Xj|

K bulk modulus
KE kinetic energy
L velocity gradient tensor
m mass
M matrix
Mij components of a matrix
M∗

li components of the adjugate
n unit normal in current configuration
N unit normal in reference configuration
p pressure



Nomenclature xvii

P power input
q heat flux per unit current area
Q heat flux per unit reference area
Q̇ rate of heat input
Q(t) rigid body rotation
r radial coordinate
r rate of internal heating (heat source) per unit mass in current state
R rate of internal heating (heat source) per unit mass in reference state
R rotation tensor in polar decomposition
S work-conjugate stress tensor
SPK2 second Piola–Kirchhoff stress
t traction, surface force per unit current area
t0 nominal traction, surface force per unit reference area
T0 nominal (first Piola–Kirchhoff) stress
u internal energy per unit mass
u displacement
U, V deformation tensors in polar decomposition
v specific volume
v volume in current configuration
V volume in reference configuration
Vijkl components of constitutive tensor for Newtonian fluid
v(x, t) velocity, Eulerian description
V(X, t) velocity, Lagrangian description
W internal energy per unit reference volume
w dual or polar vector
W vorticity or spin tensor
Ẇ0 rate of stress working per unit reference volume
x or x1, x2, x3 position of a material particle in the current configuration
X or X1, X2, X3 position of a material particle in the reference configuration
𝛁 gradient operator
[…] matrices, column or row vectors
|… | determinant or magnitude





Introduction

Continuum mechanics is a mathematical framework for studying the transmission of force
through and deformation of materials of all types. The goal is to construct a framework that is
free of special assumptions about the type of material, the size of deformations, the geometry
of the problem, and so forth. Of course, no real materials are actually continuous. We know
from physics and chemistry that all materials are formed of discrete atoms and molecules. Even
at much larger size scales, materials may be composed of distinct components, e.g., grains of
sand or platelets of blood. At even larger scales, for instance, the Earth’s crust, fractures are
ubiquitous. Nevertheless, treating material as continuous is a great advantage because it allows
us to use the mathematical tools of continuous functions, such as differentiation. In addition
to being convenient, this approach works remarkably well. This is true even at size scales for
which the justification of treating the material as a continuum might be debatable. Although
there are certainly problems for which it is necessary to take into account the discrete nature
of materials, the ultimate justification for using continuum mechanics is that predictions are
often in accord with observations and measurements.

Although the framework of continuum mechanics does not make reference to particular
kinds of materials, its application does require a mathematical description of material response.
These descriptions are inevitably idealizations based on experiments, conceptual models, or
microstructural considerations.

Until recently, it was only possible to solve a relatively small number of problems without the
assumptions of small deformations and very simple material behavior. Now, however, modern
computational techniques have made it possible to solve problems involving large deformation
and complex material behavior. This possibility has made it important to formulate these
problems correctly and to be able to interpret the solutions. Continuum mechanics does this.

The vocabulary of continuum mechanics involves mathematical objects called tensors. These
can be thought of as following naturally from vectors. Therefore, we will begin by studying
vectors. Although most students are acquainted with vectors in some form or another, we will
reintroduce them in a way that leads naturally to tensors.

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.





Part One
Mathematical
Preliminaries
This part provides the foundation for the rest of the book. The treatment is meant to make
the book self-contained, assumes little background from the reader, and only covers what is
needed later in the book. The treatment begins with vectors. Although most readers will be
acquainted with vectors, they are introduced in a way that leads naturally to tensors, introduced
in the second chapter, and their representation in terms of dyadics, in the third. Vectors and
tensors are introduced in coordinate-free form, appropriate for describing the physical entities
that arise in continuum mechanics, before discussing their representation in terms of Cartesian
coordinates in the third chapter. This chapter introduces index notation and the summation
convention. Chapter 4 discusses the cross product, introduces the permutation symbol, and
provides an introduction to the discussion of determinants in the following chapter. Chapter 6
derives the relation between vector and tensor components in coordinate systems that differ
by a rotation. This relation provides an alternative method of defining vectors and tensors.
Chapter 7 discusses principal values and directions which are pertinent to many of the particular
tensors introduced later. Chapter 8 discusses the gradient, but this material is not needed until
Part Three, Motion and Deformation, and can be deferred until then. Although Chapter 18,
Transformation of Integrals, covers a subject more naturally suited to this part, it is not needed
until Part Four and is deferred until then.

Part One has been written with a view toward what is used later in the book. Many of the
exercises derive results that are used later in the book. Consequently, even readers who are
familiar with much of this material may find value here.

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.





1
Vectors

Some physical quantities are described by scalars, e.g., density, temperature, kinetic energy.
These are pure numbers, although they do have dimensions. It would make no physical sense
to add a density, with dimensions of mass divided by length cubed, to kinetic energy, with
dimensions of mass times length squared divided by time squared.

Vectors are mathematical objects that are associated with both a magnitude, described by a
number, and a direction. An important property of vectors is that they can be used to represent
physical entities such as force, momentum, and displacement. Consequently, the meaning of
the vector is (in a sense we will make more precise) independent of how it is represented.
For example, if someone punches you in the nose, this is a physical action that could be
described by a force vector. The physical action and its result (a sore nose) are independent
of the particular coordinate system we use to represent the force vector. Hence, the meaning
of the vector is not tied to any particular coordinate system or description. For this reason,
we will introduce vectors in coordinate-free form and defer description in terms of particular
coordinate systems.

A vector u can be represented as a directed line segment, as shown in Figure 1.1. The length
of the vector is its magnitude, and denoted by u or by |u|. Multiplying a vector by a positive
scalar 𝛼 changes the length of the vector but not its orientation. If 𝛼 > 1, the vector 𝛼u is
longer than u; if 𝛼 < 1, 𝛼u is shorter than u. If 𝛼 is negative, the orientation of the vector is
reversed. It is always possible to form a vector of unit magnitude by choosing 𝛼 = u−1.

The addition of two vectors u and v can be written as

w = u + v (1.1)

Although the same symbol is used as for ordinary addition, the meaning here is different.
Vectors add according to the parallelogram law shown in Figure 1.2. If the “tails” of the vectors
(the ends without arrows) are placed at a point, the sum is the diagonal of the parallelogram
with sides formed by the vectors. Alternatively the vectors can be added by placing the “tail”
of one at the “head” of the other. The sum is then the vector directed from the free “tail” to
the free “head.” Implicit in both of these operations is the idea that we are dealing with “free”

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



6 Fundamentals of Continuum Mechanics

u

u
( (

u
( (

u

Figure 1.1 Multiplication of a vector by a scalar.

vectors. In order to add two vectors, they can be moved, keeping the length and orientation,
so that the vectors can be connected head to tail. It is clear from the construction in Figure 1.2
that vector addition is commutative:

w = u + v = v + u

Note the importance of distinguishing vectors from scalars; without the bold face denoting
vectors, equation (1.1) would be incorrect: the magnitude of w is not the sum of the magnitudes
of u and v.

The parallelogram rule for vector addition follows from the nature of the physical quantities,
e.g., velocity and force, that vectors represent. The rule for addition is an essential element of
the definition of a vector that can distinguish them from other quantities that have both length
and direction. For example, finite rotations about three orthogonal axes can be characterized
by length and magnitude. Finite rotation cannot, however, be a vector because addition is
not commutative. To see this, take a book with its front cover up and binding to the left.
Looking down on the book, rotate it 90◦ counterclockwise. Now rotate the book 90◦ about a
horizontal axis counterclockwise looking from the right. The binding should be on the bottom.
Performing these two rotations in reverse order will orient the binding toward you.

Hoffmann (1975) relates the story of a tribe that thought spears were vectors because they
had length and magnitude. To kill a deer to the northeast, they would throw two spears, one
to the north and one to the east, depending on the resultant to strike the deer. Not surprisingly,
there is no trace of this tribe, which only confirms the adage that “a little knowledge can be a
dangerous thing.”

The procedure for vector subtraction follows from multiplication by a scalar and addition.
To subtract v from u, first multiply v by −1, then add −v to u:

w = u − v = u + (−v)

u
v

u

v

u

v

u v+

u v+

Figure 1.2 Addition of two vectors.
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u

v

u cos( )

Figure 1.3 Scalar product.

There are two ways to multiply vectors: the scalar or dot product and the vector or cross
product. The scalar product is given by

u ⋅ v = uv cos(𝜃) (1.2)

where 𝜃 is the angle between u and v. As indicated by the name, the result of this operation
is a scalar. As shown in Figure 1.3, the scalar product is the magnitude of v multiplied by
the projection of u onto v, or vice versa. The definition (1.2) combined with rules for vector
addition and multiplication of a vector by a scalar yield the relation

(𝛼u1 + 𝛽u2)⋅v = 𝛼u1⋅v+𝛽u2⋅v

where 𝛼 and 𝛽 are scalars and u1 and u2 are vectors.
If 𝜃 = 𝜋 in (1.2) the two vectors are opposite in sense, i.e., their arrows point in opposite

directions. If 𝜃 = 𝜋∕2 or −𝜋∕2, the scalar product is zero and the two vectors are orthogonal.
Although the scalar product is zero neither u nor v is zero. If, however,

u ⋅ v = 0 (1.3)

for any vector v then u = 0.
The other way to multiply vectors is the vector or cross product. The result is a vector

w = u × v (1.4)

The magnitude is w = uv sin(𝜃), where 𝜃 is again the angle between u and v. As shown
in Figure 1.4, the magnitude of the cross product is equal to the area of the parallelogram

u

v
v sin( )

Figure 1.4 Magnitude of the vector or cross product.
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v sin( )

v

u

×

Figure 1.5 Direction of vector or cross product.

formed by u and v. As depicted in Figure 1.5, the direction of w is perpendicular to the plane
formed by u and v and the sense is given by the right hand rule: If the fingers of the right
hand are in the direction of u and then curled in the direction of v, the thumb of the right
hand is in the direction of w. The three vectors u, v, and w are said to form a right-handed
system.

The triple scalar product (u × v) ⋅ w is equal to the volume of the parallelepiped formed by
u, v, and w if they are right-handed and the negative of the volume if they are not (Figure
1.6). The parentheses in this expression may be omitted because it makes no sense if the dot
product is taken first: the result is a scalar and the cross product is an operation between two
vectors.

Now consider the triple vector product u × (v × w). The vector v × w must be perpendicular
to the plane containing v and w. Hence, the vector product of v × w with another vector u
must result in a vector that is in the plane of v and w. Consequently, the result of this operation
may be represented as

u × (v × w) = 𝛼v + 𝛽w (1.5)

where 𝛼 and 𝛽 are scalars.

v

u

w

Figure 1.6 Triple scalar product.
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1.1 Examples

1.1.1

Show that if the triple scalar product vanishes

u × v ⋅ w = 0 (1.6)

the three vectors are coplanar.
The scalar product u × v is perpendicular to u and v. If the triple scalar product vanishes,

then w is perpendicular to u × v and hence is in the plane of u and v. Consequently, w can
be expressed as a linear combination of the other two, e.g., w = 𝛼u + 𝛽v where 𝛼 and 𝛽 are
scalars (as long as u and v are not collinear).

1.1.2

Show that if w = 𝛼u + 𝛽v the triple scalar product of the three vectors vanishes.
Substituting w into (1.6) yields zero because the scalar products of u × v with v and with u

are zero.

Exercises

1.1 Explain (in words and/or diagrams) why

u × v = −v × u

and that

w ⋅ u = w ⋅ v = 0

where w = u × v.

1.2 Explain (in words and/or diagrams) why

u × v ⋅ w = v × w ⋅ u = w × u ⋅ v

but that a minus sign is introduced if the order of any two vectors is reversed.

1.3 Explain why u × (v × u) is orthogonal to u and show that 𝛼 and 𝛽 in (1.5) are then
related by

𝛼v cos(𝜃) + 𝛽u = 0

where 𝜃 is the angle between u and v.

1.4 Prove that if (1.3) is satisfied for any vector v then u = 0.
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1.5 Show that
(a) (u + v) ⋅ (u − v) = u2 − v2

(b) (u + v) × (u − v) = −2u × v

1.6 Consider the plane triangle shown in Figure 1.7 with sides of lengths a, b, and c and
angles 𝛼, 𝛽, and 𝛾 opposite sides a, b, and c, respectively. Use coordinate-free vector
methods to prove (do not use geometry or, if you know it, index notation)
(a) law of cosines:

a2 + b2 − 2ab cos(𝛾) = c2

(b) law of sines:

a
sin 𝛼

= b
sin 𝛽

= c
sin 𝛾

[Hint: Use scalar and vector products.]

a

b

c

Figure 1.7 Diagram for Problem 1.6.

1.7 Let a, b, and c be non-coplanar vectors that form three edges of a tetrahedron (see
Figure 1.8). Let n1, n2, and n3 be the outward unit normals to the faces formed by each
pair of vectors and let S1, S2, and S3 be the corresponding areas. Show that the product
of the unit vector normal to the fourth face and the area of the face is given by

nS = −(n1S1 + n2S2 + n3S3)

1.8 Determine 𝛼 and 𝛽 in (1.5) (in terms of u, v, w, and scalar and cross products).

1.9 A line in direction l is defined by the vector relation

u = a + ls



Vectors 11

n

a

b

c

Figure 1.8 Diagram for Problem 1.7.

where l is a unit vector and s is a scalar parameter −∞ < s < ∞. Show that this will
intersect a second line v = b + ms, where m is a unit vector, if

a ⋅ (l × m) = b ⋅ (l × m)

and determine their point of intersection, i.e. values of s for each line at the intersection.

1.10 Find the equation of the line that passes through two given points A and B located
relative to a point O by two vectors u and v (Figure 1.9).

A

B

O

u

v

Figure 1.9 Diagram for Problem 1.10.

1.11 If u, v, and w are not coplanar, then it is possible to find scalars 𝛼, 𝛽, and 𝛾 such that
any arbitrary vector z can be expressed as z = 𝛼u + 𝛽v + 𝛾w. Determine 𝛼, 𝛽, and 𝛾 (in
terms of the vectors u, v, w, and z). What happens if u, v, and w are coplanar?

1.12 Find an expression for a unit vector that lies in the intersection of the plane of u and v
with the plane of x and y.

Reference

Hoffmann B 1975 About Vectors. Dover.





2
Tensors

Force and velocity can be described as vectors but other elements of continuum mechanics are
described by tensors. There are many ways to define tensors and the subject is a rich one. Here
we take a pragmatic, operational point of view: a tensor is defined in terms of its action on
a vector. The quantities represented as tensors in continuum mechanics are physical entities.
Consequently, as for vectors in Chapter 1, tensors are introduced in a coordinate-free form.

A tensor is a linear, homogeneous, vector-valued vector function. “Vector-valued vector
function” means that a tensor acts on a vector and produces a vector as a result of the operation
depicted schematically in Figure 2.1. Hence, the action of a tensor F on a vector u results in
another vector v:

v = F(u) (2.1)

“Homogeneous” (of degree 1) means that the function F has the property

F(𝛼u) = 𝛼F(u) = 𝛼v (2.2)

where 𝛼 is a scalar. (Note: A scalar function f (x, y) is said to be homogeneous of degree n if
f (𝛼x, 𝛼y) = 𝛼nf (x, y). A function f (x, y) is linear if

f (x, y) = 𝛼x + 𝛽y + c

Hence, f (x, y) =
√

x2 + y2 is homogeneous of degree 1 but not linear. Similarly, f (x, y) =
a(x + y) + c is linear but not homogeneous.) The function F is “linear” if

F(u1 + u2) = F(u1) + F(u2) = v1 + v2 (2.3)

where v1 = F(u1) and v2 = F(u2). Combining the properties (2.1), (2.2), and (2.3) yields

F(𝛼u1 + 𝛽u2) = 𝛼F(u1) + 𝛽F(u2) = 𝛼v1 + 𝛽v2 (2.4)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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u
F, a tensor

v

Figure 2.1 Schematic illustration of the action of a tensor on a vector. The tensor acts on the vector u
and outputs the vector v.

where 𝛼 and 𝛽 are scalars. To determine if a “black box,” a function F, is a tensor, we input
vectors. If the results obey (2.4) then F must be a tensor. The definition of a tensor here is
purely operational. It must pass the “duck test”: If it has feathers like a duck, quacks like a
duck, and walks like a duck, then we agree that it is a duck without the need to go further into
what constitutes a duck.

The properties just discussed suggest that the action of a tensor on a vector can be represented
as

v = F ⋅ u (2.5)

The operation denoted by the dot is defined by the properties (2.2) and (2.3), or (2.4). The
notation is meant to emphasize the connection with the analogous relation (1.2) for the dot
product between two vectors.

Generally, the output vector v will have a different magnitude and direction from the input
vector u. In the special case where the output vector is identical to the input vector, then,
for obvious reasons, the tensor is called the identity tensor and denoted I. Hence, the identity
tensor is defined by

u = I ⋅ u (2.6)

for all vectors u.
Since both sides of (2.5) are vectors, we can form the scalar product with another vector,

say w,

w ⋅ v = w ⋅ (F ⋅ u)

and the result must be a scalar. Because scalar multiplication of two vectors is commutative, the
order of the vectors on the left side can be reversed. On the right side, it would be necessary
to write (F ⋅ u) ⋅ w. The parentheses indicate that the operation F ⋅ u must be done first. If
the parentheses were absent and the product u ⋅ w done first, the result would be a scalar.
Because the dot is reserved for operations between vectors and tensors, the scalar product of
a scalar with a vector (or a tensor) is not an operation that is defined. If, however, we define
multiplication from the left by w as

w ⋅ (F ⋅ u) = (w ⋅ F) ⋅ u
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then the result can be written without parentheses as

w ⋅ v = w ⋅ F ⋅ u (2.7)

Thus, writing the result as on the right side of (2.7) makes the meaning clear even if the
parentheses are omitted.

In contrast to the dot product of two vectors, the dot product of a tensor and a vector is not
commutative. Reversing the order defines the transpose of the tensor F, i.e.,

F ⋅ u = u ⋅ FT (2.8)

Thus, it follows that

v ⋅ F ⋅ u = u ⋅ FT ⋅ v

where parentheses are not needed, as just explained. If F = FT , then the tensor F is said to
be symmetric; if F = −FT , then F is antisymmetric or skew-symmetric. Every tensor can be
separated into the sum of a symmetric and a skew-symmetric tensor by adding and subtracting
half of its transpose

F = 1
2

(
F + FT) + 1

2

(
F − FT) (2.9)

2.1 Inverse

Is it possible to operate our tensor black box in reverse? In terms of Figure 2.1, if we insert
v in the right side, will we get u out the left? The answer is “not always,” although for the
particular tensors we are concerned with it will be possible in most cases. Later we will
determine the conditions for which the operation depicted in Figure 2.1 is reversible. If it is,
then the operation defines the inverse of F

u = F−1 ⋅ v (2.10)

Substituting for v from (2.5) and using (2.6) gives

{
F−1 ⋅ F − I

}
⋅ u = 0

Because this relation applies for any vector u, the expression in the braces must vanish, giving

F−1 ⋅ F = I (2.11)
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2.2 Orthogonal Tensor

If the output vector v has the same magnitude as the input vector u, but a different direction,
then the tensor operation results in a rotation

v = A ⋅ u (2.12)

and the tensor is called orthogonal. Because u and v have the same magnitude

v2 = v ⋅ v = u ⋅ u = u2

Using (2.8) to rewrite the left scalar product and (2.6) to rewrite the right gives

u ⋅ AT ⋅ A ⋅ u = u ⋅ I ⋅ u (2.13)

where again no parentheses are necessary. Because (2.13) applies for any vector u, we can
conclude that

AT ⋅ A = I (2.14)

Comparing to (2.11) reveals that the transpose of an orthogonal tensor is equal to its inverse.
Physically, the rotation of a vector to another direction can always be reversed, so we expect
the inverse of an orthogonal tensor to exist.

2.3 Principal Values

Is it possible to find an input vector u such that the output vector v has the same direction,
but a different magnitude? Intuitively, we expect that this is only possible for certain input
vectors, if any. If the vector v is in the same direction as u, then v = 𝜆u, where 𝜆 is a scalar.
Substituting in (2.5) yields

F ⋅ u = 𝜆u (2.15)

or, after using (2.6),

(F − 𝜆I) ⋅ u = 0 (2.16)

If the inverse of F − 𝜆I exists then the only possible solution is u = 0. Consequently there
will be special values of 𝜆 and u that satisfy this equation only when the inverse does not
exist. A value of 𝜆 that does so is a principal value (eigenvalue) of the tensor F and the
corresponding direction given by u is the principal direction (eigenvector). It is clear from
(2.16) that if u is a solution, then so is 𝛼u where 𝛼 is any scalar. Hence, only the direction of
the eigenvector is determined. Thus it is always possible to normalize the eigenvector to unit
magnitude, 𝜇 = u∕u.

Later we will learn how to determine the principal values and directions and their physical
significance. But, because all of the tensors we will deal with are real and many of them are
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symmetric, we can prove that the eigenvalues and eigenvectors must have certain properties
without having to determine them explicitly.

First we will prove that a real symmetric tensor has real principal values. Let F be a real
symmetric order tensor with a principal value 𝜆 and corresponding principal direction 𝜇

satisfying

F ⋅ 𝜇 = 𝜆𝜇 (2.17)

Taking the complex conjugate of both sides gives

F̄ ⋅ �̄� = �̄��̄� (2.18)

(Taking the conjugate of a complex expression means changing the sign of i =
√
−1 wherever

it appears.) Multiplying (2.17) by �̄� yields

�̄� ⋅ F ⋅ 𝜇 = 𝜆�̄� ⋅ 𝜇 (2.19)

and (2.18) by 𝜇 yields

𝜇 ⋅ F̄ ⋅ �̄� = �̄��̄� ⋅ 𝜇 (2.20)

Because F is real and symmetric, F = F̄T
, and the left sides of (2.19) and (2.20) are the same.

Subtracting gives

0 = (𝜆 − �̄�)𝜇 ⋅ �̄�

Since �̄� ⋅ 𝜇 ≠ 0, 𝜆 = �̄� and hence the principal values are real.
Now we prove that the eigenvectors corresponding to distinct eigenvalues are orthogonal.

For principal value 𝜆I and corresponding principal direction 𝜇I

F ⋅ 𝜇I = 𝜆I 𝜇I (2.21)

and similarly for 𝜆II and 𝜇II

F ⋅ 𝜇II = 𝜆II 𝜇II (2.22)

Forming the scalar product of (2.21) with 𝜇II and (2.22) with 𝜇I yields

𝜇II ⋅ F ⋅ 𝜇I = 𝜆I 𝜇I ⋅ 𝜇II (2.23)

𝜇I ⋅ F ⋅ 𝜇II = 𝜆II 𝜇II ⋅ 𝜇I (2.24)

Because F = FT the left sides of (2.23) and (2.24) are equal and subtraction yields

(𝜆I − 𝜆II)𝜇I ⋅ 𝜇II = 0
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Because the principal values are assumed to be distinct, 𝜆I ≠ 𝜆II , and consequently𝜇I ⋅ 𝜇II = 0.
If two of the principal values are equal, say 𝜆I = 𝜆II , but distinct from the third, then any vectors
in the plane perpendicular to the principal direction of the third principal value can serve as
principal directions. Therefore, it is always possible to find at least one set of orthogonal
eigenvectors.

2.4 Nth-Order Tensors

Lastly, we note that the tensors we have introduced here are second-order tensors because
they input a vector and output a vector. We can, however, define nth-order tensors F(n) by the
following recursive relation:

F(n) ⋅ u = F(n−1) (2.25)

If F(0) is defined as a scalar then (2.25) shows that a vector can be considered as a tensor of
order 1. Later we will have occasion to deal with third- and fourth-order tensors.

2.5 Examples

2.5.1

Show that the product H = F ⋅ G is a tensor where F and G are tensors.
Because F is a tensor it satisfies (2.5) and because G is a tensor, b = G ⋅ a for vectors a and

b. Letting u = b in (2.5) yields

v = F ⋅ G ⋅ a = H ⋅ a

Letting a = 𝛼1a1 + 𝛼2a2 and using the properties implied by the dot verifies that H satisfies
(2.4) and, thus, is a tensor.

2.5.2

If F and G are tensors, use the result from Example 2.5.1 and the definition of the transpose
(2.8) to show that

(F ⋅ G)T = GT ⋅ FT

By the definition of the transpose (2.8)

H ⋅ u = u ⋅ HT

Letting H = F ⋅ G yields

F ⋅ G ⋅ u = u ⋅ (F ⋅ G)T
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using the definition of the transpose on G ⋅ u = u ⋅ GT . But v = G ⋅ u = u ⋅ GT is itself a
vector. Therefore,

F ⋅ v = v ⋅ FT

Substituting v = u ⋅ GT on the right side establishes the result.

Exercises

2.1 In the additive decomposition of a tensor

F = 1
2

(
F + FT) + 1

2

(
F − FT)

verify that the first term is symmetric and the second term is antisymmetric.

2.2 Show the result analogous to (2.11) if the inverse is on the right:

F ⋅ F−1 = I

2.3 If F and G are tensors, use the result from Example 2.5.1 and the definition of the inverse
(2.10) to show that

(F ⋅ G)−1 = G−1 ⋅ F−1

2.4 If F is a tensor, show that

(
F−1)T =

(
FT)−1

2.5 If R and S are orthogonal tensors show that the product R ⋅ S is also orthogonal.

2.6 Show that the angle between vectors u and v is identical to the angle between the vectors
that result from application of the orthogonal tensor A separately to u and v.





3
Cartesian Coordinates

Chapter 1 and Chapter 2 introduced vectors and tensors in coordinate-free notation: that is,
without referring to any particular coordinate system. Philosophically, this is attractive because
it emphasizes the independence of the physical entities described by vectors and tensors from
their description in a particular system. Defining the rules for this description soon becomes
cumbersome, however, and it is convenient to discuss vectors and tensors in terms of their
components in a coordinate system. Moreover, when considering a particular problem or
implementing the formulation on a computer, it is necessary to adopt a coordinate system.

Given that a coordinate system is necessary, we might take the approach that we should
express our results in a form that is appropriate for completely arbitrary coordinate systems.
That is, we could make no assumptions that the axes of the system are orthogonal or scaled in
the same way and so on. This is often useful and can lead to a deeper understanding of vectors
and tensors. (Section 4.5 gives a brief introduction to this approach.) Nevertheless, it requires
the introduction of many details that, at least at this stage, will be distracting.

Consequently, we will consider almost exclusively rectangular Cartesian coordinate sys-
tems. We will, however, continue to use and emphasize a coordinate-free notation. Fortunately,
results that can be expressed in a coordinate-free notation, if interpreted properly, can be trans-
lated into components in any arbitrary coordinate system.

3.1 Base Vectors

A rectangular Cartesian coordinate system with origin O is shown in Figure 3.1. The axes
are orthogonal and are labeled x, y, and z, or x1, x2, and x3. A convenient way to specify the
coordinate system is to introduce vectors that are tangent to the coordinate directions. More
generally, a set of vectors is a basis for the space (here three-dimensional) if every vector in
the space can be expressed as a unique linear combination of the base vectors. For rectangular
Cartesian systems, it is convenient to use unit vectors as base vectors

|e1| = e1 ⋅ e1 = 1, |e2| = |e3| = 1 (3.1)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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z, x3

x, x1

y, x2

e1

e2

e3 O

Figure 3.1 Rectangular Cartesian coordinate system specified by unit, orthogonal base vectors.

that are orthogonal:

e1 ⋅ e2 = 0, e1 ⋅ e3 = 0, e2 ⋅ e3 = 0 (3.2)

The six equations, (3.1) and (3.2), and the additional three that result from reversing the order
of the scalar product in (3.2) can be written compactly as

ei ⋅ ej = 𝛿ij =
{

1 if i = j
0 if i ≠ j

(3.3)

where the indices (i, j) stand for (1, 2, 3) and 𝛿ij is the Kronecker delta. Therefore, (3.3)
represents nine equations. Note that one i and one j appear on each side of the equation and
that each index is free to take on the value 1, 2, or 3. Consequently, i and j in (3.3) are free
indices.

A scalar component of the vector u is given by its projection on a coordinate direction:

ui = ei ⋅ u (3.4)

Equation (3.4) stands for three equations, one for i = 1, 2, 3. Because ei is a unit vector, (1.2)
indicates that the right side of (3.4) is the magnitude of u multiplied by the cosine of the angle
between u and ei. We can now represent the vector u as the sum of the products of the scalar
components with the unit base vectors:

u = u1e1 + u2e2 + u3e3 (3.5)

Each term, e.g., u1e1, is a vector component of u. The left side of (3.5) is a coordinate-free
representation: that is, it makes no reference to a particular coordinate system that we are
using to represent the vector. The right side is the component form; the presence of the base
vectors e1, e2, and e3 denotes explicitly that u1, u2, and u3 are the components with respect
to the coordinate system with these particular base vectors. For a different coordinate system,
with different base vectors, the right side would be different but would still represent the same
vector, indicated by the coordinate-free form on the left side.
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3.2 Summation Convention

Equation (3.5) can be expressed more concisely by using the summation sign:

u =
3∑

k=1

ukek = ukek (3.6)

where k takes on the explicit values 1, 2, and 3. Consequently, it is called a summation or
dummy index because it is simply a placeholder: changing k to m does not alter the meaning
of the equation. (In contrast, the free index i on the right side of (3.4) cannot be changed to
m without making the same change on the other side of the equation.) Note that in (3.6) k
appears twice on the right side but not on the left. Because the form (3.6) occurs so frequently,
we will adopt the summation convention: The summation symbol is dropped and summation
is implied whenever an index is repeated in an additive term (a term separated by a plus or
minus sign) on one side of the equation. This is a compact and powerful notation but it requires
adherence to certain rules. Regardless of the physical meaning of the equation, the following
rules apply:

� A subscript should never appear more than exactly twice (in each additive term) on one side
of an equation.

� If a subscript appears once on one side of an equation it must appear exactly once (in each
additive term) on the other side

For example, both of the following two equations are incorrect because the index j appears
once on the right side but not at all on the left:

wi = ui + vj

wi = ukvjskti

The following equation is incorrect because the index k appears three times in an additive
term:

wij = AikBjkuk (3.7)

In contrast, the equation

a = ukvk + rksk + pkqk

is correct. Even though k appears six times on the right side, it only appears twice in each
additive term.

The default interpretation is that a repeated index implies summation. Consequently, in an
expression that contains a repeated index that is not meant to be summed, it must be denoted
explicitly; for example, “No sum on k” if k is the repeated index. The summation convention
applies only to the repeat of two indices. Consequently, if three indices occur (in an additive
term), such as in (3.7), either one of the indices must be changed or, if they are to be summed,
the summation must then be indicated explicitly.
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Although these rules are simple, it is important to adhere to them as indices will multiply
faster than rabbits in succeeding chapters. A familiarity with the application of these rules
provides guidance not only to the manipulation of expressions but also to their meaning.

To reproduce (3.4), the component of the vector u with respect to the ith coordinate direction,
we form the scalar product ei ⋅ u and then express u in its component form:

ei ⋅ u = ei ⋅ (ujej)

Note that it would be incorrect to write uiei on the right side since the index i would then
appear three times. The scalar product is an operation between vectors and, thus, applies to the
two base vectors. The result is given by (3.3). Recalling that the repeated j implies summation
and writing the terms explicitly gives

ei ⋅ u = uj𝛿ij =
3∑

j=1

𝛿ijuj = 𝛿i1u1 + 𝛿i2u2 + 𝛿i3u3 = ui

We can now use the scalar product, base vectors, and index notation to convert some of
the coordinate-free relations in Chapter 1 to component form. For example, the sum of two
vectors is given by (1.1) in the coordinate-free notation. Forming the scalar product of both
sides with the base vectors ei yields the component form

wi = ui + vi

Thus, in a rectangular Cartesian coordinate system, the component of the sum of two vectors
is the sum of the corresponding components of the two vectors.

As a final example, we derive the expression for the scalar product u ⋅ v in terms of the
components of the vectors. Substituting the component representations, noting that the scalar
product is an operation between vectors, and using (3.3) yields

u ⋅ v = uivj𝛿ij =
3∑

i=1

3∑

j=1

uivj𝛿ij =
3∑

j=1

ujvj = ujvj

3.3 Tensor Components

The definition of a tensor embodied by the properties (2.1), (2.2), and (2.3) or (2.4) suggests
that the action of tensor on a vector can be represented in coordinate-free notation by (2.5). The
Cartesian component or index representation follows from the procedure for identifying the
Cartesian components of vectors, i.e.,

vk = ek ⋅ v = ek ⋅ {F ⋅ ulel}

= (ek ⋅ F ⋅ el)ul

The second line above can be represented in the component form

vk = Fklul (3.8)
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or in the matrix form

⎡
⎢
⎢
⎣

v1
v2
v3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

u1
u2
u3

⎤
⎥
⎥
⎦

(3.9)

where

Fkl = ek ⋅ F ⋅ el (3.10)

are the Cartesian components of the tensor F (with respect to the base vectors el). Although
(3.9) is a convenient representation for computations, a disadvantage is that it does not contain
information about the appropriate base vectors.

The expression (3.10) for the Cartesian components of a tensor leads naturally to the
representation of tensors as

F = Fklekel (3.11)

Substituting this form into (3.10) gives an identity simply by using the rules that have already
been established for vectors and the properties of the Kronecker delta (3.3). The matrix
equation (3.9) can also be written as

[v1 v2 v3] = [u1 u2 u3]
⎡
⎢
⎢
⎣

F11 F21 F31
F12 F22 F32
F13 F23 F33

⎤
⎥
⎥
⎦

or more compactly as [v]T = [u]T [F]T . Note, however, in the index notation (3.8), or in the
dyadic notation to be discussed next, that there is no need for the transpose of a vector
corresponding to change from a column vector to a row vector.

3.4 Dyads

Equation (3.11) represents a tensor as a dyadic, a polynomial of dyads. A dyad is two vectors
placed next to each other, e.g., ab, e1e2, ij (although the notation a ⊗ b is often used). The
meaning of a dyad is defined operationally by its action on a vector:

(ab) ⋅ v = a(b ⋅ v) (3.12)

Because a dyad operates on a vector and outputs a vector by means of a rule that is linear and
homogeneous, it can be used to represent a tensor. Although this notation may appear strange,
it can be given a simple interpretation in matrix notation:

ab =
⎡
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎦

[b1 b2 b3] =
⎡
⎢
⎢
⎣

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎥
⎥
⎦
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Hence, the operation indicated by (3.12) written in matrix form is

⎡
⎢
⎢
⎣

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

v1
v2
v3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

a1
a2
a3

⎤
⎥
⎥
⎦

[b1v1 + b2v2 + b3v3]

Equation (3.12) implies that multiplication by a dyad is not commutative, i.e.,

v ⋅ (ab) = b(v ⋅ a) (3.13)

The transpose of a dyad is defined by reversing the order of the vectors that make up the dyad.
Thus, the transpose of the dyad ab is ba. In matrix form (3.13) can be written as

[v1 v2 v3]
⎡
⎢
⎢
⎣

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤
⎥
⎥
⎦

T
⎡
⎢
⎢
⎣

v1
v2
v3

⎤
⎥
⎥
⎦

Equation (3.11) and

𝚽 = a1b1 + a2b2 + a3b3 (3.14)

are examples of dyadics. The transpose of a dyadic reverses each pair of vectors, e.g.,

𝚽T = b1a1 + b2a2 + b3a3

Application of this rule to (3.11) is consistent with the definition of the transpose of a tensor
given by (2.8):

FT = Fijejei = Fqpepeq (3.15)

In the preceding equation, the second equality follows by relabeling i as q and j as p (permissible
because these are summation or dummy indices). As a consequence (FT )ij = Fji and the
transpose in (3.15) can be formed by reversing the order of the base vectors or the indices, but
not both.

Multiplication of the dyadic (3.14) by a vector is given by

v ⋅𝚽 = (v ⋅ a1)b1 + (v ⋅ a2)b2 + (v ⋅ a3)b3

Multiplication is distributive:

(a + b)(c + d) = ac + bc + ad + bd

𝚽 = ab = (akek)(blel) = akblekel
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As for a tensor, a dyadic is symmetric if it is equal to its transpose and (3.15) shows that the
components of the tensor satisfy

Fij = Fji

Similarly, a dyadic or tensor is antisymmetric if it is equal to the negative of its transpose.
Thus, the components satisfy

Fij = −Fji

As a result the diagonal components are all zero

F11 = F22 = F33 = 0

and the off-diagonal components are the negative of each other,

F21 = −F12, F13 = −F31, F23 = −F32

As noted earlier (2.9), any second-order tensor can be written as the sum of a symmetric and
antisymmetric part.

The identity tensor I in (2.6) was defined as that tensor whose product with a vector gives
the identical vector. This implies that I has the following dyadic representation in terms of
orthonormal base vectors:

I = 𝛿mnemen = e1e1 + e2e2 + e3e3

3.5 Tensor and Scalar Products

As shown in Example 2.5.1, the tensor product of two tensors F and G is itself a tensor. The
Cartesian component or index form of the product tensor H = F ⋅ G is defined naturally using
the dyadic representation and operations between the base vectors:

F ⋅ G = (Fijeiej) ⋅ (Gklekel) (3.16)

= FijGklei(ej ⋅ ek)el (3.17)

= FikGkleiel (3.18)

Using (3.10) gives the scalar components of H as

Hil = FikGkl (3.19)

Note that (3.16) to (3.18) are single tensor or dyadic equations; (3.19) represents nine scalar
equations for the Cartesian components of H.
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The components of the product tensor can be computed in the usual way by matrix multi-
plication of the components of F and G:

FikGkl =
⎡
⎢
⎢
⎣

F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

G11 G12 G13
G21 G22 G23
G31 G32 G33

⎤
⎥
⎥
⎦

As with matrix multiplication, the tensor product is not commutative. In fact, the rule that the
transpose of a matrix product is the product of the transposes of the individual matrices is
easily verified by the rules for computing with the components of the dyad:

F ⋅ G = {GT ⋅ FT}T (3.20)

Example 2.5.2 proves this in coordinate-free form.
Index notation for Cartesian coordinate systems can be used to prove a relation between

two coordinate-free representations. Because the resulting coordinate-free forms are valid in
any coordinate system, they can, with appropriate interpretation, be expressed in terms of
non-Cartesian components.

The scalar product between two tensors can be computed in two ways depending on the
order in which the dot products between the base vectors are taken. Notation varies on this
product but here we follow Malvern (1988) and use the horizontal arrangement of the dots to
indicate that the dot product is taken between the two closest base vectors (the two inside) and
then the two furthest (the two outside):

F ⋅ ⋅G = (Fijeiej) ⋅ ⋅(Gklekel)

= FijGkl(ei⋅el)(ej⋅ek)

= FlkGkl

Malvern (1988) uses vertical dots to indicate that the first base vectors of each dyad are dotted
and the second base vectors of each are dotted:

F : G = (Fijeiej) : (Gklekel)

= FijGkl(ei⋅ek)(ej⋅el)

= FlkGlk (3.21)

But the same result is obtained by using the transpose of one of the tensors in (3.21). If either
of the tensors is symmetric then the two scalar products are identical.

The trace of a tensor F is a scalar obtained by forming the scalar product of F with the
identity tensor:

tr(F) = F ⋅ ⋅I (3.22)
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3.6 Examples

3.6.1

Example 2.5.2 is to prove (3.20) without recourse to component representation. To prove it
using dyadic or component form:

F ⋅ G = Fijeiej ⋅ Gklekel

= eiFikGklel

= {elFikGklei}
T

= {elGklek ⋅ ejFijei}
T

= {Gklelek ⋅ Fijejei}
T

= {GT ⋅ FT}T

3.6.2

Use dyadic or index (Cartesian component) notation to show that F ⋅ ⋅GT = FT ⋅ ⋅G.
Here

F ⋅ ⋅GT = FijGij

= FT
ji Gij = FT ⋅ ⋅G

3.6.3

If F is a symmetric tensor and G is a skew-symmetric tensor, use dyadic or index (Cartesian
component) notation to show that

F ⋅ ⋅G = 0

Here

F ⋅ ⋅G = FijGji

= 1
2

{
FijGji − FijG

T
ji

}

= 1
2

{FijGji − FijGij}

= 1
2

{
FijGji − FT

ji Gij

}

= 1
2

{FijGji − FjiGij} = 0
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Exercises

3.1 Write out the following expressions completely (i.e., replace all indices by appropriate
numbers):
(a) vi = Hjiuj
(b) e = ekk
(c) W = FijHij
(d) Fij = aGij

3.2 Verify the following identities by writing out all terms:
(a) 𝛿mm = 3
(b) 𝛿mn𝛿mn = 3

3.3 Write out Problems 3.1.a and 3.1.d in matrix form.

3.4 Use the dyadic or index (Cartesian component) form of I to prove that
(a) v ⋅ I = v
(b) F ⋅ I = F

3.5 Use index notation to show that if u ⋅ v = 0 for any vector v then each component of u
must be zero.

3.6 Use the dyadic or index (Cartesian component) forms of F and I in (3.22) to show that
the trace is equal to the sum of the three diagonal components: tr(F) = Fnn.

3.7 Use dyadic or index (Cartesian component) form to show that F ⋅ ⋅G = G ⋅ ⋅F.

3.8 Use dyadic or index (Cartesian component) form to show that

F ⋅ ⋅G = F : GT = FT : G

3.9 For tensors F, G, and H use dyadic or index (Cartesian component) notation to prove that

F ⋅ G ⋅ ⋅H = F ⋅ ⋅G ⋅ H

= H ⋅ F ⋅ ⋅G

= G ⋅ H ⋅ ⋅F

3.10 Use dyadic or index (Cartesian component) notation to show that the results in the
preceding problem do not apply if the horizontal dots are replaced by vertical dots.

3.11 Use dyadic or index (Cartesian component) notation to show that the trace can also be
used to represent the scalar product

F ⋅ ⋅G = tr(F ⋅ G)

Reference

Malvern LE 1988 Introduction to the Mechanics of a Continuous Medium. Prentice Hall.



4
Vector (Cross) Product

We introduced the coordinate-free form of the vector or cross product in Chapter 1. Here we
will introduce the component form.

For two vectors u and v, there are nine (32) possible products of their components. The scalar
product is the sum of three. The remaining six can be combined in pairs to form a vector:

w = u × v = (uiei) × (vjej) = uivj(ei × ej) (4.1)

To interpret (4.1), we first consider the cross products of the base vectors. The vector

e3 = e1 × e2

is perpendicular to the plane containing e1 and e2 with the sense given by the right hand rule.
Consequently, reversing the order of the two vectors in the product must change the sign:

e1 × e2 = −e2 × e1

Similarly,

e3 × e1 = −e1 × e3 = e2

e2 × e3 = −e3 × e2 = e1

and

e1 × e1 = e2 × e2 = e3 × e3 = 0

These equations can all be expressed as

ei × ej = 𝜖ijkek (4.2)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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where the permutation symbol is defined such that

𝜖ijk =
⎧
⎪
⎨
⎪
⎩

0 if any two indices are equal
+1 if (ijk) is an even permutation of (123), i.e., 123, 312, 231
−1 if (ijk) is an odd permutation of (123), i.e., 213, 321, 132

(4.3)

Interchanging any two indices of 𝜖ijk changes an even permutation to odd and vice versa.
The relation (4.2) can be used to determine the component form of the cross product of two

vectors in (4.1):

w = uivj(ei × ej) = uivj𝜖ijkek (4.4)

Writing out the sum in (4.4) and using the properties of the permutation symbol (4.3) yields

w = (u2v3 − v2u3)e1 + (u3v1 − u1v3)e2 + (u1v2 − v1u2)e3

This equation can be arranged as the determinant

w =
|
|
|
|
|
|

e1 e2 e3
u1 u2 u3
v1 v2 v3

|
|
|
|
|
|

4.1 Properties of the Cross Product

To illustrate manipulation of index notation and the permutation symbol, we confirm previously
introduced properties of the cross product.

First, to show that reversing the order of the vectors introduces a minus sign we express the
cross product in index notation:

u × v = 𝜖ijkuivjek (4.5)

= −𝜖jikuivjek (4.6)

= −𝜖lmkvlumek = −v × u (4.7)

The second line introduces a minus sign because the order of the indices i and j in 𝜖ijk is
reversed. In the third line, the indices i and j are simply relabeled (this can be done because
they are dummy or summation indices) and this is recognized as the component form of v × u.

Now we show that the cross product is orthogonal to each of the vectors in the product:

u ⋅ w = w ⋅ u = 0 (4.8)

where w = u × v. Substituting the expression for w in (4.8) and expressing in component form
gives

u ⋅ (u × v) = (uiei) ⋅ (𝜖klmukvlem)

= uiukvl(ei ⋅ em)𝜖klm

= uiukvl𝜖kli = 0
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Because the scalar product pertains to vectors, the expression can be regrouped as in the second
line and carrying out the scalar product results in the third line. Interchanging two indices on
𝜖lik introduces a minus sign and relabeling the indices as in (4.6) and (4.7) shows that the
expression is equal to its negative and, hence, must be zero. This is a particular case of the
more general result of Example 3.6.3.

4.2 Triple Scalar Product

We have already noted that the triple scalar product u × v ⋅ w gives the volume of the paral-
lelepiped with u, v, and w as edges (or the negative of the volume depending on the ordering
of the vectors) (Figure 1.6). The component form follows from (4.4):

u × v ⋅ w = 𝜖ijkuivjwk (4.9)

The triple scalar product can also be represented by the following determinant:

u × v ⋅ w =
|
|
|
|
|
|

u1 u2 u3
v1 v2 v3
w1 w2 w3

|
|
|
|
|
|

(4.10)

where the right hand side of (4.9) indicates the operations implied by the determinant on the
right side of (4.10). The next chapter will discuss determinants in more detail.

Because the triple scalar product vanishes if the vectors u, v, and w are coplanar, the condition
is also expressed by the vanishing of this determinant. In this case, any one of the vectors
can be expressed as a linear combination of the other two or, equivalently, one row or column
of the matrix is a linear combination of the remaining two.

Replacing u by ei = 𝛿ipep and similarly for v and w gives the triple scalar product of three
orthonormal unit vectors

ei ⋅ (ej × ek) = 𝜖ijk =
|
|
|
|
|
|

𝛿i1 𝛿i2 𝛿i3
𝛿j1 𝛿j2 𝛿j3
𝛿k1 𝛿k2 𝛿k3

|
|
|
|
|
|

(4.11)

The determinant is skew symmetric with respect to the interchange of (i, j, k), demonstrat-
ing that the interchange of rows implies multiplication by (−1). When (i, j, k) = (123), the
determinant equals one.

4.3 Triple Vector Product

The component form of the triple vector product introduced in (1.5) is

u × (v × w) = ujej × (ek𝜖klmvlwm)

= ei𝜖ijk𝜖klmujvlwm (4.12)
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The following 𝜖–𝛿 identity is essential for manipulating the component forms of expressions
involving two vector products:

𝜖ijk𝜖imn = 𝛿jm𝛿kn − 𝛿jn𝛿km (4.13)

Cyclically rotating the indices on the first 𝜖ijk = 𝜖kij in (4.12) and relabeling indices puts this
expression in the same form as (4.13). Using the 𝜖–𝛿 identity gives the component form, which
can be recognized as the coordinate-free form in the second line below:

u × (v × w) = (viei)ukwk − (wiei)ukvk

= v(u ⋅ w) − w(u ⋅ v) (4.14)

Thus, in (1.5) 𝛼 is u ⋅ w and 𝛽 = −u ⋅ v.

4.4 Applications of the Cross Product

Two applications of the cross product familiar from basic mechanics represent the velocity
due to rigid body rotation and the moment of a force about a point.

4.4.1 Velocity due to Rigid Body Rotation

In a rigid body the distance between any two points is fixed. Consider rotation of a rigid body
with angular velocity 𝜔 about an axis designated by the unit vector n, as shown in Figure 4.1.
The angular velocity vector is

𝝎 = 𝜔n

Q

P

P′

ω dt

ω

θ

n

x

O

Figure 4.1 Velocity due to rigid body rotation.
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O

xo
(k)

P
(k)

xR

xx Ro
(k) –

R

Figure 4.2 Moment of a force P(k) on the k particle.

A point P, in the rigid body, is located by the position vector x. The vector n × x is in direction
PP′ and has magnitude |x| sin 𝜃. But |x| sin 𝜃 = PQ is the perpendicular distance from P to
the axis of rotation. Therefore, in time dt, the displacement is

du = 𝜔n × x dt

In the limit dt → 0, the velocity is

v = 𝝎 × x

4.4.2 Moment of a Force P about O

Consider a system of particles. The kth particle is shown in Figure 4.2. Each particle is located
at x(k)

o relative to a point O and subjected to a force P(k). The moment of the force P(k) about
O is

M(k)
o = x(k)

o × P(k), (no sum on k) (4.15)

For k particles in equilibrium, the sum of the forces must vanish

∑

k

P(k) = 0 (4.16)

and the sum of the moments must vanish

∑

k

x(k)
o × P(k) = 0 (4.17)

A result from statics states that if the sum of the moments about one point vanishes for a
system of particles in equilibrium, then the sum of the moments about any point vanishes.
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Consider another point R where xR is the vector from the origin to R. Since (4.17) is satisfied,

∑

k

{(
x(k)

o − xR

)
× P(k) + xR × P(k)} = 0

∑

k

(
x(k)

o − xR

)
× P(k) + xR ×

∑

k

P(k) = 0

But the last term vanishes because of (4.16) and hence the sum of the moments about R must
vanish.

4.5 Non-orthonormal Basis

Although we use almost exclusively orthogonal unit vectors as base vectors, it is not necessary
and any three non-coplanar vectors can be used as a basis. This section and Problems 4.13 and
4.14 give a brief introduction to the use of non-orthonormal base vectors.

For an orthonormal basis, an arbitrary vector u is given by (3.5). The coefficient of each
basis vector in (3.5) is also the projection of the vector on the base vector (3.4). This is a
special feature of rectangular Cartesian systems.

Let g1, g2, and g3 be three arbitrary non-coplanar vectors that we choose as a basis. Then
an arbitrary vector u is given by

u = uigi

where the summation convention applies for repeated indices regardless of whether they are
superscripts or subscripts (the reason for using superscripts will become clear). Note that the
component ui is not given by the scalar product of u with gi, ui ≠ gi ⋅ u, because gi ⋅ gj ≠ 𝛿ij.
Instead ui is given by the scalar product of u with the dual or reciprocal base vectors gi

defined by

gi ⋅ gj = 𝛿ij

Because g1 ⋅ g2 = 0 and g1 ⋅ g3 = 0, g1 is orthogonal to g2 and g3 and must be proportional to
the cross product of g2 and g3:

g1 = g−1g1 × g2

Forming g1 ⋅ g1 gives g = g1 ⋅ g2 × g3 where g ≠ 0 because the vectors are non coplanar (see
Problem 1.11). Thus the vectors of the reciprocal basis are given by

g1 = g−1g2 × g3, g2 = g−1g3 × g1, g3 = g−1g1 × g2 (4.18)

Thus, any arbitrary vector u can be expressed as

u = (u ⋅ g1)g1 + (u ⋅ g2)g2 + (u ⋅ g3)g3

Substituting from (4.18) and using Problem 1.2 yield

u = (u × g2) ⋅ g3g1g−1 + (g1 × u) ⋅ g3g2g−1 + (g1 × g2) ⋅ ug3g−1
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4.6 Example

Use index notation to prove

(a × b) ⋅ (a × b) = a2b2 sin2 𝜃

where 𝜃 is the angle between a and b.
Here

|a × b| = (a × b) ⋅ (a × b)

= 𝜖ijkeiajbk ⋅ 𝜖pqrepaqbr

= (ei ⋅ ep)𝜖ijk𝜖pqrajbkaqbr

= 𝜖ijk𝜖iqrajbkaqbr

Using the 𝜖–𝛿 identity (4.13),

|a × b| = (𝛿jq𝛿kr − 𝛿jr𝛿kq)ajbkaqbr

= (ajaj)(bkbk) − (ajbj)(akbk)

= (a ⋅ a)(b ⋅ b) − (a ⋅ b)(a ⋅ b)

Using (1.2) gives

|a × b| = a2b2 − a2b2 cos2 𝜃

= a2b2 sin2 𝜃

Exercises

4.1 Beginning with (4.2), show that

𝜖ijm = em ⋅ (ei × ej)

and explain why no parentheses are needed.

4.2 Construct a proof of the 𝜖–𝛿 identity (4.13) by noting that each of the four free indices
j, k, m, n can take on only three values: 1, 2, or 3. Therefore at least two indices must
be identical and as a result it is possible to enumerate the various outcomes.

4.3 (a) Show that contracting two of the indices of the 𝜖–𝛿 identity gives

𝜖pqi𝜖pqj = 2𝛿ij

(b) Show that contracting all three indices gives

𝜖pqr𝜖pqr = 6
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4.4 Show that

em = 1
2
𝜖mijei × ej

where the em are (right-handed) orthonormal base vectors.

4.5 We showed that the triple vector product u × (v × w) has the representation (4.14).
(a) Show that the result can be written as

u × (v × w) = u ⋅ (wv − vw)

(b) Show that (4.14) implies

u × (v × w) + v × (w × u) + w × (u × v) = 0

4.6 Determine the scalars 𝛼 and 𝛽 in the relation

(u × v) × w = 𝛼u + 𝛽v

where u, v, and w are vectors.

4.7 If n is a unit vector show that any vector u can be written as the sum of terms parallel
and perpendicular to n:

u = n(n ⋅ u) + n × (u × n)

4.8 Use index notation to prove the following relations involving the cross products of
vectors a, b, c, and d:
(a) (a × b) ⋅ (c × d) = (a ⋅ c)(b ⋅ d) − (a ⋅ d)(b ⋅ c)
(b) (a × b) × (c × d) = [c ⋅ (d × a)]b − [c ⋅ (d × b)]a

4.9 For a skew-symmetric tensor W the following product

W ⋅ u = w × u

for an arbitrary vector u defines the vector w. Determine the components of W in terms
of the components of w and those of w in terms of the components of W. (What happens
if W is not skew symmetric?)

4.10 If n is a unit vector n ⋅ n = 1. Differentiating gives ṅ ⋅ n = 0. Consequently ṅ is orthog-
onal to n and can be represented as w × n.
(a) Show that

w = n × ṅ

(b) Use the result of Problem 4.9 to show that

W = ṅn − nṅ
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4.11 Use the Cartesian component forms of the vectors u and v and the tensor F to show that

u ⋅ (v × F) = (u × v) ⋅ F

4.12 The adjugate F∗ of a tensor F is defined by the following relation for all vectors u
and v:

(u × v) ⋅ F∗ = (F ⋅ u) × (F ⋅ v)

Show that the rectangular Cartesian components of F∗ are given by

F∗
ni =

1
2
𝜖iqr𝜖nklFqkFrl

4.13 Determine the dual base vectors if g1 = e2 + e3, g2 = e1 + e3, and g3 = e1 + e2.

4.14 (a) If g1 = 3e1 + e2 and g2 = −3e1 + e2 are two vectors to be used as a basis in the
1–2 plane, construct the dual base vectors and show them in relation to the original
base vectors in a graph.

(b) Express the vector v = e1 + 5e2 in terms of the original and dual bases from (a)
and show them in a diagram.





5
Determinants

Expressions involving the determinants of matrices will arise frequently in later chapters.
Consequently, it is useful to review some of their properties. In addition, this will provide
further illustrations of manipulating the permutation symbol.

As noted in Chapter 4, the component form of the triple scalar product can be represented
with the permutation symbol (4.9) or as a determinant (4.10). This correspondence suggests
that 𝜖ijk can be useful in representing determinants more generally. For example, if we replace
the components of the vector u, namely, u1, u2, and u3, by M11, M12, and M13, and similarly
replace the components of v and w by M2i and M3i, then (4.10) becomes an expression for the
determinant of the matrix M with components Mij:

det(M) = 𝜖ijkM1iM2jM3k =
|
|
|
|
|
|

M11 M12 M13
M21 M22 M23
M31 M32 M33

|
|
|
|
|
|

(5.1)

Writing out the summation and using the properties of the permutation symbol (4.3) gives

det(M) = M11(M22M33 − M23M32) − M12(M21M33 − M23M31)

+ M13(M21M32 − M22M31)

= M11

|
|
|
|

M22 M23
M32 M33

|
|
|
|
− M12

|
|
|
|

M21 M23
M31 M33

|
|
|
|
+ M13

|
|
|
|

M21 M22
M31 M32

|
|
|
|

where the second equality results from arranging the coefficients of M11, M12, and M13 as
2 × 2 determinants. The sign of the coefficient is (−1)i+j where i and j are the row and column
numbers. Thus, the summation represents an expansion of the determinant by the first row.
The signed coefficients of M11, M12, and M13 are called the cofactors of these terms. Note that
each term has one and only one element from each row and column.
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Alternatively, we could replace the components of u by M11, M21, and M31, and similarly
replace the components of v and w by Mi2 and Mi3. This leads to an expansion about the first
column:

det(M) = 𝜖ijkMi1Mj2Mk3 (5.2)

Consequently, the determinant of a matrix and its transpose are identical:

det(M) = det(MT )

Because the appearance of the specific numbers 1, 2, and 3 in (5.1) and (5.2) is sometimes
inconvenient, it is useful to develop another expression in terms of arbitrary indices. To this
end, consider the quantity

hlmn = 𝜖ijkMliMmjMnk

First, note from (5.1) that h123 = det M. The argument of equations (4.5) to (4.7) shows that
hlmn is skew symmetric with respect to the interchange of (l, m, n) and zero if any two indices
are the same. From these results, we can conclude that

𝜖ijkMliMmjMnk = 𝜖lmn det(M) (5.3)

Similarly, beginning with (5.2) we can show that

𝜖lmnMliMmjMnk = 𝜖ijk det(M) (5.4)

5.1 Cofactor

Writing the determinant as

det(M) = M1ic1i

identifies

c1i = 𝜖ijkM2jM3k (5.5)

as the cofactor of M1i. It is not necessary to expand about the first row (5.1) or first column
(5.2). We can expand about any row or column

det(M) = Mpicpi = Mipcip (no sum on p)

(Because we have adopted the convention that a repeated index implies summation, we must
explicitly indicate here that p is not to be summed. If p is summed, the result is 3 det(M).)
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Similarly to (5.3) and (5.4), we can derive an expression for the cofactor that does not include
specific values of the indices. The cofactor of M1i in (5.1) is (5.5). To rewrite this in a more
general way for arbitrary indices we first multiply the right side by 𝜖123 = 1 and write it as the
sum of two terms

c1i =
1
2
𝜖123𝜖ijkM2jM3k +

1
2
𝜖123𝜖ijkM2jM3k

= 1
2
𝜖123𝜖ijkM2jM3k +

1
2
𝜖132𝜖ijkM3jM2k

= 1
2
𝜖ijk𝜖1mnMmjMnk

In the second term, reversing 3 and 2 in 𝜖123 and j and k in 𝜖ijk gives the second line. The third
line follows from noting that 2 and 3 are the only subscripts giving nonzero terms in 𝜖1mn.
Because this expression applies for any value of the first index we can write

cli =
1
2
𝜖lmn𝜖ijkMmjMnk (5.6)

The transpose of this matrix is the adjugate of M (see Problem 4.12)

M∗
li =

1
2
𝜖imn𝜖ljkMmjMnk (5.7)

5.2 Inverse

The adjugate is related to the inverse of a matrix. Multiplying the adjugate (5.7) by Mpi gives

MplM
∗
li =

1
2
𝜖imn(𝜖ljkMpiMmjMnk)

We can rewrite the term in parentheses on the right side by using (5.3) and the 𝜖–𝛿 identity
(4.13) to give

MpiM
∗
il =

1
2
𝜖lmn𝜖pmn det(M) = 𝛿pl det(M)

Dividing both sides by det(M) gives

Mpi

M∗
il

det(M)
= 𝛿pl

If the right side is arranged as a matrix, it is the identity, i.e., the matrix with ones on the
diagonal and zeros elsewhere. Consequently, the term multiplying Mpi must be an expression
for the inverse of this matrix. Therefore, the inverse is given by

M−1
il =

M∗
il

det(M)
(5.8)



44 Fundamentals of Continuum Mechanics

Note that if det(M) = 0, the inverse will not exist. Recall that when the determinant is inter-
preted as the triple scalar product of three vectors, it vanishes if the three vectors are coplanar.
In other words, the third vector can be expressed in terms of a linear combination of the other
two or, equivalently, one row of the matrix is a linear combination of the remaining two.

5.3 Example

Prove that the product of two determinants is the determinant of the product matrix

det(A) det(B) = det(C)

where Ckl = AkpBpl.
Using (5.1) gives

det(A) det(B) = det(A)𝜖mnpbm1bn2bp3

Then using (5.3) gives

det(A) det(B) = 𝜖ijk(aimbm1)(ajnbn2)(akpbp3)

Thus the left hand side is det(C).

Exercises

5.1 Write out equation (5.2) and verify that this does represent an expansion in columns.

5.2 Use equation (5.1) or (5.2) to show that interchanging two rows or columns changes
the sign of a determinant.

5.3 Derive equation (5.4).

5.4 Show that the same expression for the cofactor, equation (5.6), results if one begins
with the column expansion (5.2).

5.5 Verify equation (5.6) by writing out c21 and c13.

5.6 Use equation (4.10) and the result of Example 5.3 to show that

(a ⋅ b × c)(d ⋅ e × f) =
|
|
|
|
|
|

a ⋅ d a ⋅ e a ⋅ f
b ⋅ d b ⋅ e b ⋅ f
c ⋅ d c ⋅ e c ⋅ f

|
|
|
|
|
|



Determinants 45

5.7 Use equation (4.11) and the results of Example 5.3 and Problem 5.6 to show that

𝜖ijk𝜖mnp =
|
|
|
|
|
|

𝛿i1 𝛿i2 𝛿i3
𝛿j1 𝛿j2 𝛿j3
𝛿k1 𝛿k2 𝛿k3

|
|
|
|
|
|

|
|
|
|
|
|

𝛿m1 𝛿m2 𝛿m3
𝛿n1 𝛿n2 𝛿n3
𝛿p1 𝛿p2 𝛿p3

|
|
|
|
|
|

=
|
|
|
|
|
|
|

𝛿im 𝛿in 𝛿ip
𝛿jm 𝛿jn 𝛿jp
𝛿km 𝛿kn 𝛿kp

|
|
|
|
|
|
|

Verify that setting i = m gives the 𝜖–𝛿 identity (4.13).

5.8 Show that

det (M) = 1
6
𝜖ijk𝜖lmnMilMjmMkn

5.9 Use index notation to prove the following identity: [(M ⋅ a) × (M ⋅ b)] ⋅ M =
det(M) (a × b).

5.10 Show that

(M ⋅ a) ⋅ (M ⋅ b) × (M ⋅ c) = det (M) (a ⋅ b × c)

5.11 Use Problem 5.10 to show that the determinant of an orthogonal tensor is ±1 where
the positive (negative) sign applies if the rotation is from right-handed to right-(left)
handed.





6
Change of Orthonormal Basis

In Chapter 1 and Chapter 2 vectors and tensors were introduced in coordinate-free form. This
representation was motivated by recognizing that the quantities we use vectors to represent
are physical entities and hence independent of the coordinate system used to describe them.
In practice, it is, however, necessary to refer tensors and vectors to a coordinate system. In
Chapter 3 we introduced components relative to rectangular Cartesian coordinate systems
described by unit, orthogonal (i.e., orthonormal) base vectors. This is a convenient simplifi-
cation. Nevertheless, we can retain a version of the coordinate-free concept by requiring that
the components of tensors and vectors be expressed in terms of any rectangular Cartesian
coordinate system. In this chapter we will show that this requirement imposes certain relations
between the components in different systems. These relations provide an alternative approach
to defining vectors and tensors.

Consider the two coordinate systems shown in Figure 6.1: the 123 system with base vectors
e1, e2, e3 and the 1′2′3′ system with base vectors e′1, e′2, e′3. The base vectors in the primed and
unprimed systems are related by

e′j = A ⋅ ej (6.1)

Because both the primed and unprimed systems of base vectors are orthonormal, A is an
orthogonal tensor (2.12). Forming the scalar product with ei in (6.1) gives

ei ⋅ e′j = cos(i, j′) = ei ⋅ A ⋅ ej = Aij (6.2)

where cos(i, j′) is the cosine of the angle between the i axis and the j′ axis. Thus, in the
component Aij, the second subscript (j in this case) is associated with the primed system.
Either (6.1) or (6.2) leads to the dyadic representation

A = e′kek

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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e1
′

e2

e1e3

e′
2

e′
3

Figure 6.1 Rotation of the base vectors ei to a new system e′i .

Because the inverse of an orthogonal tensor is equal to its transpose (2.14), the unprimed base
vectors can be given in terms of the primed ones by

em = AT ⋅ e′m (6.3)

and

e′n ⋅ em = cos(m, n′) = e′n ⋅ AT ⋅ e′m = AT
nm = Amn

which agrees with (6.2). These properties reinforce the choice of the name orthogonal for
this type of tensor: it rotates one system of orthogonal unit vectors into another system of
orthogonal unit vectors. Equation (2.14) is expressed in index form as

AikAjk = AkiAkj = 𝛿ij (6.4)

Equation (6.4) reflects the following relation in terms of the direction cosines:

3∑

k′=1

cos(i, k′) cos(j, k′) =
3∑

k=1

cos(k, i′) cos(k, j′) = 𝛿ij

6.1 Change of Vector Components

Now consider a vector v. Because v represents a physical entity, we can express it in terms of
components in either system

v = viei = v′je
′
j

Both the vi and the v′j represent the same vector; they simply furnish different descriptions.

Equations (6.1) and (6.3) between the base vectors impose relations between the vi and v′j . The
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component in the primed system is obtained by forming the scalar product of v with the base
vector in the primed system:

v′k = e′k ⋅ v = e′k ⋅ (viei)

= vie
′
k ⋅ ei

= viAik (6.5)

Equations (6.5) can be represented as a matrix equation

[
v′1 v′2 v′3

]
= [v1 v2 v3]

⎡
⎢
⎢
⎣

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎥
⎥
⎦

or, alternatively, as

⎡
⎢
⎢
⎢
⎣

v′1
v′2
v′3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

A11 A21 A31
A12 A22 A32
A13 A23 A33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

v1
v2
v3

⎤
⎥
⎥
⎦

(6.6)

Similarly, the components of v in the unprimed system can be expressed in terms of the
components in the primed system

vi = Aikv′k (6.7)

or in matrix form

[v] = [A][v′] (6.8)

Note that according to (6.1) the tensor A rotates the unprimed base vectors into the primed
base vectors, but it is the components of AT that appear in the matrix equation (6.6) as implied
by the index form (6.5).

We reiterate that (6.8) represents a relation between the components of the same vector. In
the equation

u = A ⋅ v′

u and v′ are different vectors although the components of u in the primed system are equal to
the components of v in the unprimed system. Writing

v = A ⋅ v′

should be avoided because it implies that v and v′ are different vectors and this notation can
cause confusion between representations of a single vector expressed in terms of components
in the primed and unprimed systems.
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6.2 Definition of a Vector

Previously, we noted that vectors are directed line segments that add according to the parallel-
ogram rule (Figure 1.2). This property of addition reflects the nature of the physical quantities
that we represent as vectors, e.g., velocity and force. We now give another definition of a
vector. This definition expresses the requirement that the quantities represented by vectors
are physical entities that cannot depend on the coordinate systems used to represent them.
A (Cartesian) vector v in three dimensions is a quantity with three components v1, v2, v3 in
one rectangular Cartesian system e1e2e3, which, under rotation of the coordinates to another
Cartesian system e′1e′2e′3 (Figure 6.1), become components v′1, v′2, v′3 with

v′i = Ajivj (6.9)

where Aji is given by (6.2). This definition can then be used to deduce other properties of
vectors. For example, we can show that the sum of two vectors is indeed a vector. If ui and vi
are components of vectors then the three quantities ti = ui + vi are components of a vector t
because they transform like one, according to the rule (6.9):

t′i = u′i + v′i = Ajiuj + Ajivj

= Aji(uj + vj) = Ajitj

6.3 Change of Tensor Components

Expressions for the components of a tensor F with respect to a different set of base vectors,
say e′

k, follow from the relations for vector components:

vk = Fklul (6.10)

and

v′k = AmkFmnun

= AmkFmnAnlu
′
l

= F′
klu

′
l

Because this result applies for components of all vectors u and v

F′
kl = AmkFmnAnl (6.11)

where, as before, Amk is given by (6.2). Equation (6.11) can be written in matrix form as

[F′] =
⎡
⎢
⎢
⎣

A11 A21 A31
A12 A22 A32
A13 A23 A33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎥
⎥
⎦
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or, more compactly, as

[F′] = [A]T [F][A]

Similarly, the inversion is given by

Fij = AilAjkF′
lk (6.12)

or

[F] = [A][F′][A]T

The relations between components of a tensor in different orthogonal coordinate systems can
be used as a second definition of a tensor that is analogous to the definition of a vector: In
any rectangular coordinate system, a tensor is defined by nine components that transform
according to the rule (6.11) when the relation between unit base vectors is (6.1).

The relations (6.11) and (6.12) can be used to test whether the nine elements in an array are
components of a tensor.

6.4 Isotropic Tensors

In later sections we will have occasion to work with a special class of tensors called isotropic
tensors. They have the same components in every orthonormal coordinate system (see Aris,
1989, Sec. 2.7, pp. 30–34). All scalars (tensors of order 0) are isotropic. Equation (6.5)
demonstrates that no vectors (except the null vector) are isotropic. For second-order tensors,
the components in different rectangular coordinate systems are related by (6.11). For an
isotropic second-order tensor, F′

ij = Fij and, hence,

Fij = AkiAljFkl (6.13)

for all Aki. It is straightforward to verify that (6.13) is satisfied by any tensor of the form

Fij = 𝛼𝛿ij (6.14)

where 𝛼 is a scalar. Substituting (6.14) into the right side of (6.13) gives

Fij = 𝛼AkiAkj

and using (6.4) establishes (6.13).
This demonstrates that the identity tensor multiplied by a scalar is an isotropic tensor but

does not answer the question of whether all isotropic tensors of second order must have this
form. To do this, we again use (6.13). If this equation must be satisfied for all Aki then it must
certainly be satisfied for particular choices of the Aki. Judicious choice of the Aki can be used
to demonstrate that all isotropic second-order tensors must have the form (6.14).
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First, consider the transformation for which A13 = A21 = A32 = 1 are the only nonzero Aki.
This rotates the e1 into e′3, e2, into e′1 and e3 into e′2. Substituting into (6.13) gives

F11 = Ai1Aj1Fij = F22

and, similarly, F22 = F33. Thus, the three diagonal components of Fij must be identical:
F11 = F22 = F33 = 𝛼. Similarly, for the off-diagonal components

F12 = Ai1Aj2Fij = A21A32F23 = F23

Thus, the off-diagonal components must also be identical

F12 = F21 = F31 = F13 = F23 = F32 = 𝛽

Now consider the transformation corresponding to a rotation of 90◦ about the x3 axis
so that A12 = −1 = −A21 = −A33 are the only nonzero Aki. Applying (6.13) to F12 gives
F12 = A21A12F12 = −F12. Therefore 𝛽 = 0 and (6.14) is the only isotropic tensor of order 2.
A similar analysis can be used to show that the only isotropic tensor of third order is 𝛼𝜖ijk.

Tensor products of isotropic tensors are also isotropic. Therefore, fourth-order tensors with
components proportional to 𝛿ij𝛿kl are isotropic. In fact, all isotropic tensors of even order are
sums and products of 𝛿ij. The number of possible terms for a tensor of order N is given by the
combinatorial formula

N!
2(N∕2)(N∕2)!

where N! is the total number of ordered combinations, (N∕2)! is the number of ordered ways
in which the pairs can be arranged, e.g., 𝛿ij𝛿kl = 𝛿kl𝛿ij, and 2(N∕2) accounts for the switching
of indices of each pair, e.g., 𝛿ij = 𝛿ji. Applying this formula for N = 4 yields three possible
combinations. Thus, the only isotropic tensor of fourth order has the form

Vijkl = a𝛿ij𝛿kl + b𝛿ik𝛿jl + c𝛿il𝛿jk (6.15)

Replacing b by b̄ + c̄ and c by b̄ − c̄ in (6.15) gives

Vijkl = a𝛿ij𝛿kl + b̄(𝛿ik𝛿jl + 𝛿il𝛿jk) + c̄(𝛿ik𝛿jl − 𝛿il𝛿jk) (6.16)

If Vijkl = Vjikl or Vijkl = Vijlk, c̄ = 0 and only two parameters are needed to define an isotropic
fourth-order tensor with this additional symmetry. Another method of establishing this result
will be given in Chapter 23.

6.5 Example

If Fij and Gij are components of second-order tensors show that the Hij given by

FikHkj = Gij

are components of a second-order tensor.
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Using (6.12) for Fij and Gij gives

AimF′
mnAknHkj = AipG′

pqAjq

Multiplying both sides by AirAjs and using (6.4) gives

F′
rn(AknHkjAjs) = G′

rs

This identifies H′
ns as the term in parentheses. Consequently, the elements of the array Hij

transform according to (6.12) and hence are components of a tensor.

Exercises

6.1 Show that

v′k = ek ⋅ (AT ⋅ v)

6.2 Derive equation (6.7).

6.3 Derive equation (6.12).

6.4 Verify that equation (6.4) is the component representation of equation (2.12).

6.5 Let 𝜆 = 𝜆iei be a unit vector having (all positive) direction cosines 𝜆i with respect
to the ei coordinates. Define a new coordinate system e′i so that the e′3 axis is in the
direction 𝜆. Define the e′2 axis so that it is perpendicular to e′3 and to e1 and has a
positive projection on e2. Define the e′1 axis so that e′1e′2e′3 form a right-handed system
(i.e., e′1 ⋅ e′2 × e′3 = 1). Show that the components of the rotation tensor e′i = A ⋅ ei that
transforms the ei system to the e′i system are

A(𝜆1, 𝜆2, 𝜆3) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+
√

𝜆2
2 + 𝜆2

3 0 𝜆1

−
𝜆1𝜆2

√

𝜆2
2 + 𝜆2

3

+
𝜆3

√

𝜆2
2 + 𝜆2

3

𝜆2

−
𝜆1𝜆3

√

𝜆2
2 + 𝜆2

3

−
𝜆2

√

𝜆2
2 + 𝜆2

3

𝜆3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6.6 Given that the ui are components of vectors (and, hence, transform like vector
components when the coordinate system is rotated), show that the three quantities vk
defined by

ukvk = 𝛼

where 𝛼 is a scalar, are also components of a vector.
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6.7 If Fij are rectangular Cartesian components of a second-order tensor, show that if the
nine quantities Gij satisfy

FpqGqp = 𝛼

where 𝛼 is a scalar, then the Gij are also components of a second-order tensor.

6.8 If the ui and vi are components of vectors (and, hence, transform like vector components
when the coordinate system is rotated), show that the three quantities wk defined by

wk = 𝜖ijkuivj

are also components of a vector.

6.9 F and G are second-order tensors. If the components of F and G are related by

Fij = HijklGkl

derive the rule for transforming the components Hijkl from the unprimed to the primed
system.

6.10 Show that if the components of a tensor F are symmetric in one rectangular Cartesian
coordinate system, i.e., Fij = Fji, then its components are symmetric in any rectangular
Cartesian system, i.e., F′

ij = F′
ji.

6.11 Prove that a tensor with components Fij that are antisymmetric in one Cartesian coor-
dinate system, i.e., Fji = −Fij, are antisymmetric in any Cartesian coordinate system.

6.12 Show that the sum of the normal components of a tensor is independent of the coordinate
system used to express the components; that is,

F11 + F22 + F33 = F′
11 + F′

22 + F′
33

where Fij and F′
ij are the components of F in any two rectangular Cartesian coordinate

systems.

6.13 If Fij are components of a second-order tensor, show that the combination FklFlk has
the same value in any rectangular Cartesian coordinate system.

6.14 Consider a rotation of axis through an angle 𝜃 about the x3 axis as shown in Figure 6.2.
Show that the dyadic form of the tensor A in the relation

e′k = A ⋅ ek

is given by A = cos 𝜃(e1e1 + e2e2) + sin 𝜃(e2e1 − e1e2) + e3e3.

6.15 For the coordinate transformation in the preceding question:
(a) Determine the components of a vector u in the primed system having components

ui in the unprimed system.
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Figure 6.2 Rotation of the base vectors ei to a new system e′i .

(b) Determine the components of a tensor F in the primed system having components
Fij in the unprimed system.

(c) Simplify your results in (a) and (b) for the case in which the rotation is small,
𝜃 = d𝜃 ≪ 1, so that sin d𝜃 ≈ d𝜃 and cos d𝜃 ≈ 1.

6.16 The derivative of the orthogonal tensor A in Problem 6.14 with respect to 𝜃 is obtained
by differentiating each element separately. If this derivative is Ȧ(𝜃) show that Ȧ(𝜃) =
A(𝜃)Ȧ(0).

6.17 If the primed orthonormal base vectors are functions of time, e′p(t) = A(t) ⋅ ep,
show that

d
dt

e′p(t) = Ȧ ⋅ ATe′p(t)

and that Ȧ ⋅ AT is skew symmetric.

6.18 (a) Determine the components of the orthogonal tensor corresponding to a 90◦ rotation
about the x2 axis.

(b) Determine the components of the orthogonal tensor corresponding to a 90◦ rotation
about the x3 axis.

(c) Determine the components of the orthogonal tensor corresponding to successive
rotations: first 90◦ about the x2 axis, then 90◦ about the x3 axis.

6.19 Problem 6.5 derived the matrix transforming the unprimed coordinate system into one
in which the x′3 axis was in the direction of a unit vector 𝜆 = 𝜆iei.
(a) Combine this result with that of Problem 6.14 to show that the orthogonal tensor

corresponding to causing rotation of the unprimed coordinate system through an
angle 𝜃 about 𝜆 has components given by

Λij = 𝛿ij cos 𝜃 + 𝜆i𝜆j(1 − cos 𝜃) − 𝜖ijk𝜆k sin 𝜃

(b) Show that tensor can be expressed in coordinate-free form as

𝚲 = e′3e′3 + (e′1e′1 + e′2e′2) cos 𝜃 − (e′1e′2 − e′2e′1) sin 𝜃

where 𝜆 = e′3. This is a general representation of an orthogonal tensor and one can
verify that it has the appropriate properties.
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6.20 Show that two successive rotations of Problem 6.18 are equivalent to a rotation of 120◦

about a line making equal angles with the coordinate axis.

6.21 Show that 𝛼𝜖ijk, where 𝛼 is a scalar, is an isotropic tensor of third order.

Reference
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7
Principal Values and
Principal Directions

In Chapter 2 we defined a tensor in terms of a black box (Figure 2.1) that takes a vector as
input and produces a vector as output by means of certain rules. In general, the output vector
has neither the same direction nor the same magnitude as the input vector. If, however, the
output vector has the same direction, then, as discussed in Chapter 2, v = 𝜆u, where 𝜆 is a
scalar and

(F − 𝜆I) ⋅ 𝝁 = 0 (7.1)

where 𝝁 can be taken as a unit vector.
The principal values (eigenvalues) 𝜆K and principal directions (eigenvectors)𝝁K of a second-

order tensor F satisfy (2.15)

F ⋅ 𝝁K = 𝜆K 𝝁K (no sum on K) (7.2)

for K = I, II, III and 𝝁K can be taken as a unit vector without loss of generality.
Forming the scalar product of (7.2) with 𝝁K yields

𝝁K ⋅ F ⋅ 𝝁K = 𝜆K (no sum on K) (7.3)

and with 𝝁L ≠ 𝝁K yields

𝝁L ⋅ F ⋅ 𝝁K = 𝜆K(𝝁L ⋅ 𝝁K) = 0 (no sum on K) (7.4)

Comparison to (3.10) identifies (7.3) and (7.4) as the components of F in a coordinate system
aligned with the principal axes. Because the principal directions are orthonormal, they can be
used as unit base vectors and F has the dyadic representation

F = 𝜆I 𝝁I𝝁I + 𝜆II 𝝁II𝝁II + 𝜆III 𝝁III𝝁III (7.5)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Expressed differently, the matrix of components in this system is diagonal:

[F] =
⎡
⎢
⎢
⎢
⎣

𝜆I 0 0

0 𝜆II 0

0 0 𝜆III

⎤
⎥
⎥
⎥
⎦

The dyadic representation of the orthogonal tensor that rotates the original basis system ek
into one aligned with the principal directions is

A = 𝝁Kek (7.6)

where the k are still summed even though one is upper case and one lower. If the 𝝁K are
expressed in terms of the ei base vectors, then (7.6) becomes

A =
(
𝝁K

)

i eiek

where (𝝁k)i is the ith component of the Kth eigenvector (relative to the ei basis). Therefore the
components of 𝝁K are the columns of A when written as a matrix. Expressing 𝝁K in terms of
the ei in (7.3) gives

𝜆K =
(
𝝁K

)

i Fij

(
𝝁K

)

j (no sum on K)

In other words, using (7.6) as a coordinate transformation yields a diagonal form for the
components of F.

A non-trivial solution for (7.2) is possible only if the inverse of F − 𝜆I does not exist. As
noted following (5.8), this requires that the determinant formed from the matrix of components
vanishes:

det
(
Fij − 𝜆𝛿ij

)
= 0 (7.7)

Using the result of Problem 5.8 to expand (7.7) yields

𝜆3 − I1𝜆
2 − I2𝜆 − I3 = 0 (7.8)

where the coefficients are

I1 = tr F = Fkk = F11 + F22 + F33 (7.9)

I2 = 1
2

(FijFji − FiiFjj) =
1
2

(
F ⋅ ⋅F − I2

1

)
(7.10)

I3 = det(F) = 1
6
𝜖ijk𝜖pqrFipFjqFkr (7.11)

Because the principal values are independent of the coordinate system, so are the coefficients
in the characteristic equation (7.8) used to determine them. These coefficients are scalar
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invariants of the tensor F (generally called the principal invariants, since any combination of
them is also invariant).

Using the principal axis representation of F (7.5) to form the tensor product of F with itself
gives

F ⋅ F =
(
𝜆I

)2
𝝁I𝝁I +

(
𝜆II

)2
𝝁II𝝁II +

(
𝜆III

)2
𝝁III𝝁III

and the triple product is

F ⋅ F ⋅ F =
(
𝜆I

)3
𝝁I𝝁I +

(
𝜆II

)3
𝝁II𝝁II +

(
𝜆III

)3
𝝁III𝝁III (7.12)

Because each of the principal values satisfies (7.8), rearranging ( 7.12) for each of the principal
values gives

F ⋅ F ⋅ F = I1F ⋅ F + I2F + I3I (7.13)

This is the Cayley–Hamilton theorem. A consequence is that FN , where N > 3, can be written
as a sum of F ⋅ F, F, and I with coefficients that are functions of the invariants.

7.1 Example

Determine the principal values and principal directions for the tensor with the values shown
in the matrix below:

[F] =
⎡
⎢
⎢
⎢
⎣

7 0 −2

0 5 0

−2 0 4

⎤
⎥
⎥
⎥
⎦

Expanding about the second row or column to take the determinant det(F − 𝜆I) gives

(5 − 𝜆) [(7 − 𝜆)(4 − 𝜆) − (−2)(−2)] = 0

Therefore, the roots are 𝜆I = 8, 𝜆II = 5, and 𝜆III = 3. To determine the principal directions we
substitute the principal values back in (7.1). For 𝜆I = 8 this gives the three equations

(7 − 8)
(
𝝁I)

1 + 0
(
𝝁I)

2 − 2
(
𝝁I)

3 = 0

0 + (5 − 8)
(
𝝁I)

2 − 0 = 0

−2
(
𝝁I)

1 + 0 + (4 − 8)
(
𝝁I)

3 = 0
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Because the third equation is two times the first, these are linearly dependent. Either the first
or third equation gives

(
𝝁I
)

1 = −2
(
𝝁I
)

3 and the second gives
(
𝝁I
)

2 = 0. Making 𝝁I a unit
vector gives

𝝁I = ∓ 2
√

5
e1 + 0e2 ±

1
√

5
e3

For 𝜆II = 5, 𝝁II = ±e2. This result can be recognized immediately since the off-diagonal
elements of the second row and column are zero. We can follow the same procedure for 𝝁III ,
but it is simplest to choose 𝝁III = 𝝁I × 𝝁II for a right-handed system:

𝝁III = ∓ 1
√

5
e1 ∓

2
√

5
e3

F is given in principal axis form as

F = 𝜆I𝝁
I𝝁I + 𝜆II𝝁

II𝝁II + 𝜆III𝝁
III𝝁III

The matrix with the components of the eigenvectors as columns is given by

[A] =
⎡
⎢
⎢
⎢
⎣

−2∕
√

5 0 −1∕
√

5

0 1 0

1∕
√

5 0 −2∕
√

5

⎤
⎥
⎥
⎥
⎦

where we have taken the top sign. Taking the bottom signs yields the same result. Matrix
multiplication can be used to verify that

⎡
⎢
⎢
⎢
⎣

−2∕
√

5 0 1∕
√

5

0 1 0

−1∕
√

5 0 −2∕
√

5

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

7 0 −2

0 5 0

−2 0 4

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

−2∕
√

5 0 −1∕
√

5

0 1 0

1∕
√

5 0 −2∕
√

5

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

8 0 0

0 5 0

0 0 3

⎤
⎥
⎥
⎥
⎦

Exercises

7.1 In the example above, prove that
(
𝝁II

)

1 =
(
𝝁II

)

3 = 0.

7.2 Prove that the invariants are independent of coordinate system from (6.11). That is, show
that the combination of components that forms an invariant is the same in the primed
and unprimed systems.
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7.3 Use the Cayley–Hamilton theorem (7.13) to obtain the following useful expression for
the determinant:

det (F) = 1
3

{
tr (F ⋅ F ⋅ F) − 3I1I2 − I3

1

}

7.4 Use the Cayley–Hamilton theorem (7.13) to derive the following expressions:
(a) F ⋅ F = I1F + I2I + I3F−1

(b) tr
(
F−1) = −I2∕I3

7.5 Show that if a tensor F has principal values 𝜆I , 𝜆II = 𝜆III , then the principal directions
corresponding to 𝜆II and 𝜆III can be any vectors orthogonal to the principal direction of
𝜆I .

7.6
(a) Determine the principal values and principal directions of the tensor F with Carte-

sian components given by the matrix

[F] =
⎡
⎢
⎢
⎢
⎣

11 4 0

4 5 0

0 0 7

⎤
⎥
⎥
⎥
⎦

(b) Show that using the matrix with the components of the eigenvectors as columns as
a rotation gives a diagonal form for [F].

7.7 A tensor is given by the dyad F = ab. Determine the trace, determinant, and second
invariant of F.

7.8 Show that the only real principal value of the tensor of Problem 6.14 is one and that the
corresponding principal direction is e3.

7.9 Use the determinant expansion of Problem 5.8 to show that the coefficients in (7.8) are
given by (7.9), (7.10), and (7.11).





8
Gradient

Typically, the vectors and tensors used in continuum mechanics will be functions of position.
Consequently, it is necessary to define an operation that expresses their changes with position.
To do so, we first consider a scalar-valued function

𝜙(x) = 𝜙(x1, x2, x3)

Figure 8.1 is a schematic of three level surfaces; that is, three surfaces on which the value of
𝜙(x) is constant. A concrete example is a topographic map: 𝜙 is elevation and a function of
two spatial variables. Contours indicate the positions of constant elevation. Now consider the
change in 𝜙 as the position is changed from x to x + dx: write dx = 𝝁 ds where 𝝁 is a unit
vector in the direction of dx and ds is the magnitude of dx. The change in 𝜙 per unit distance
is defined by

d𝜙
ds

= lim
ds→0

𝜙 (x + 𝝁 ds) − 𝜙 (x)
ds

Writing

d𝜙
ds

= 𝝁 ⋅ 𝛁𝜙 (8.1)

defines the gradient of 𝜙 as 𝛁𝜙. The representation (8.1) is coordinate free. To convert to a
Cartesian representation we expand the left side as

d𝜙
ds

=
(
𝜕𝜙

𝜕xk
ek

)

⋅
(

dxl

ds
el

)

(8.2)

Noting that the second term in (8.2) is the Cartesian representation of 𝝁 identifies the Cartesian
component form of the gradient of 𝜙 as

𝛁𝜙 = el
𝜕𝜙

𝜕xl
= el𝜙,l

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
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n

t

dx

Figure 8.1 Schematic showing three level surfaces of the function 𝜙. The normal n and tangent t are
also shown with the infinitesimal change of position vector dx.

where 𝜙,l ≡ 𝜕𝜙∕𝜕xl. We can generalize and define a gradient operator as

𝛁 = ek
𝜕

𝜕xk

If 𝝁 is any vector tangent to the level surface then there is no change in 𝜙 and

d𝜙
dt

= 0

where dt is an infinitesimal distance in the tangent direction. Hence𝛁𝜙must be in the direction
n perpendicular to the level surface:

𝛁𝜙 = 𝛼n (8.3)

Taking 𝝁 = n in (8.1) and using (8.3) yields

d𝜙
dn

= n⋅ (𝛁𝜙) = n⋅ (𝛼n) = 𝛼

Therefore, 𝛁𝜙 is in the direction n (normal to a surface of constant 𝜙) and has the magnitude
d𝜙∕dn:

𝛁𝜙 = d𝜙
dn

n

This property makes the gradient useful for determining the normal to surfaces of constant 𝜙.
An expression for the result of applying the gradient operator to a vector v follows naturally

from the representation of tensors as dyadics:

𝛁v =
(

ek
𝜕

𝜕xk

)

(vlel) =
𝜕vl

𝜕xk
ekel = 𝜕kvlekel (8.4)

The second equality follows because the base vectors have fixed magnitude (unit vectors)
and direction. The last equality introduces the notation 𝜕k (…) ≡ 𝜕 (…) ∕𝜕xk. Using either this
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notation or (…) ,k is useful for keeping the subscripts in the same order as the dyadic base
vectors. The tensor (8.4) has Cartesian components in matrix form given by

[𝛁v] =
⎡
⎢
⎢
⎢
⎣

𝜕v1∕𝜕x1 𝜕v2∕𝜕x1 𝜕v3∕𝜕x1

𝜕v1∕𝜕x2 𝜕v2∕𝜕x2 𝜕v3∕𝜕x2

𝜕v1∕𝜕x3 𝜕v2∕𝜕x3 𝜕v3∕𝜕x3

⎤
⎥
⎥
⎥
⎦

To motivate this representation and demonstrate that the result is, in fact, a tensor, consider
the Taylor expansion of vector components about xo

j

vi(xj) = vi

(
xo

j

)
+

𝜕vi

𝜕xk

(
xo

j

)(
xk − xo

k

)
+… (8.5)

or, in vector form,

v(x) = v(xo) + (x − xo) ⋅ 𝛁v(x)o +… (8.6)

(Note that the order of the subscripts in (8.5) dictates the position of (x − xo) in (8.6).) Because
𝛁v associates a vector v(x) − v(xo) with a vector x − xo by means of a relation that is linear
and homogeneous, it is a tensor. The transpose of this tensor is

(𝛁v)T =
𝜕vi

𝜕xj
eiej = vi,jeiej (8.7)

The scalar product of 𝛁v and I yields the divergence of the vector v

𝛁v ⋅ ⋅I =
(
𝜕vi

𝜕xj
ejei

)

⋅ ⋅(𝛿klekel) =
𝜕vk

𝜕xk

We can also form the divergence from the scalar product of 𝛁 and v

𝛁 ⋅ v =
𝜕vk

𝜕xk

If the vector v is the gradient of a scalar function 𝜙, i.e., v = 𝛁𝜙, then

𝛁 ⋅ 𝛁𝜙 =
(

eh
𝜕

𝜕xh

)

⋅
(

el
𝜕𝜙

𝜕xl

)

= 𝜕2𝜙

𝜕xk𝜕xk
= ∇2𝜙

gives the Laplacian of 𝜙. Forming the cross product of 𝛁 and v yields the curl of v

𝛁 × v =
𝜕vj

𝜕xi
𝜖ijkek = ei𝜕jvk𝜖ijk
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Similar arguments can be used to interpret the gradient of a tensor. A Taylor expansion of
the tensor F about xo yields

Fij(xk) = Fij

(
xo

k

)
+

𝜕Fij

𝜕xl

(
xo

k

)(
xl − xo

l

)
+…

and identifies

𝛁F = (ei𝜕i)(Fjkejek) =
𝜕Fjk

𝜕xi
eiejek

as a third-order tensor. Forming the scalar and vector products of 𝛁 with F yields

𝛁 ⋅ F = ek𝜕k ⋅ (Flmelem) = 𝛿kl
𝜕Flm

𝜕xk
em =

𝜕Fkm

𝜕xk
em

𝛁 × F = ek𝜕k × (Flmelem) =
𝜕Flm

𝜕xk
𝜖klnenem

8.1 Example: Cylindrical Coordinates

For reasons mentioned earlier, we will almost exclusively consider rectangular Cartesian
systems in which the lengths and orientations of base vectors are fixed. Nevertheless, the
treatment discussed here can be extended to more general coordinate systems. Although the
formal procedure is straightforward the details of bookkeeping are more involved. As a simple
example, consider cylindrical coordinates with unit orthogonal base vectors er, e𝜃 , and ez as
shown in Figure 8.2. The gradient operator is given by

𝛁 = er
𝜕

𝜕r
+ e𝜃

1
r
𝜕

𝜕𝜃
+ ez

𝜕

𝜕z

The first and third terms are in the same form as in rectangular coordinates; the middle term
requires 1∕r in order to make the dimensions of each term be the reciprocal of length.

z

x θ

θ

y

ez

er

e

Figure 8.2 Base vectors in cylindrical coordinates depend on the angle 𝜃.
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In terms of base vectors in the x and y directions, the unit vectors in the r and 𝜃 directions
are given by

er = cos 𝜃ex + sin 𝜃ey, e𝜃 = − sin 𝜃ex + cos 𝜃ey

Thus, the unit vectors e𝜃 and er change with 𝜃

der

d𝜃
= e𝜃 ,

de𝜃
d𝜃

= −er

Consequently, when applying the gradient operator to a vector in cylindrical coordinates, it is
necessary to include the derivatives of the base vectors:

𝛁 ⋅ v =
𝜕vr

𝜕r
+ e𝜃

1
r
𝜕

𝜕𝜃
⋅ (vrer + v𝜃e𝜃) +

𝜕vz

𝜕z

=
𝜕vr

𝜕r
+

vr

r
+ 1

r

𝜕v𝜃
𝜕𝜃

+
𝜕vz

𝜕z

Similar operations can be used to generate the cylindrical coordinate forms for 𝛁 × v, ∇2𝜙,
𝛁v, and operations of the gradient on tensors.

Exercises

8.1 Prove that if v = 𝛁𝜙, then 𝛁 × v = 0.

8.2 If F is a symmetric second-order tensor, determine the unit normal to the surface given
by

x ⋅ F ⋅ x = 1

8.3 Show that the rectangular components of the vector v ⋅ 𝛁u, where the tensor 𝛁u is the
gradient of the vector u, are the same as the result from applying to u the operator
obtained formally as the product v ⋅ 𝛁. In other words, show that

v ⋅ (𝛁u) = (v ⋅ 𝛁) u

8.4 Use index notation to prove the following identities:
(a) 𝛁 ⋅ (𝜙v) = v ⋅ 𝛁𝜙 + 𝜙𝛁 ⋅ v
(b) 𝛁 × (𝜙v) = 𝛁𝜙 × v + 𝜙𝛁 × v

8.5 Use index notation to prove the following identities, where u and v are vectors and F is
a second-order tensor:
(a) 𝛁 ⋅ (u × v) = (𝛁 × u) ⋅ v − u ⋅ (𝛁 × v)
(b) 𝛁 ⋅ (F ⋅ u) = u ⋅ (𝛁 ⋅ F) + FT ⋅ ⋅𝛁u

8.6 Use index notation to prove the following identities involving the gradient operator:
(a) 𝛁 × (u × v) = u (𝛁 ⋅ v) − v (𝛁 ⋅ u) + (v ⋅ 𝛁) u − (u ⋅ 𝛁) v
(b) 𝛁 × (𝛁 × v) = 𝛁(𝛁 ⋅ v) − ∇2v where 𝛁2 = 𝛁 ⋅ 𝛁



68 Fundamentals of Continuum Mechanics

8.7 Use index notation to calculate
(a) 𝛁r
(b) 𝛁 (x∕r)
(c) ∇2r = 𝛁 ⋅ 𝛁r where r2 = x ⋅ x = xkxk

8.8 Show that

𝛁 × u = −u × 𝛁

where the derivative in 𝛁 on the right side is to be interpreted as acting on u (but
the order of the base vectors remains as written). Thus the usual property of the cross
product applies if one of the multipliers is the gradient operator 𝛁.

8.9 Show that

F × 𝛁 = −
(
𝛁 × FT)T

where F is a second-order tensor and interpretation of the 𝛁 acting from the right is the
same as in Problem 8.8.

8.10 If M = 𝛁 × E, write out the rectangular Cartesian components M11, M22, M12, and M21.

8.11 Determine the form of Laplacian ∇2𝜙 in cylindrical coordinates where 𝜙 is a scalar
function.

8.12 Determine the form of curl 𝛁 × v in cylindrical coordinates. Answer:

er

(
1
r

𝜕vz

𝜕𝜃
−

𝜕v𝜃
𝜕z

)

+ e𝜃

(
𝜕vr

𝜕z
−

𝜕vz

𝜕r

)

+ ez

(
𝜕v𝜃
𝜕r

− 1
r

𝜕vr

𝜕𝜃
+

v𝜃
r

)

8.13 Determine the cylindrical component form of 𝛁v. Answer:

[𝛁v] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕vr

𝜕r

𝜕v𝜃
𝜕r

𝜕vz

𝜕r

1
r

𝜕vr

𝜕𝜃
−

v𝜃
r

1
r

𝜕v𝜃
𝜕𝜃

+
vr

r
1
r

𝜕vz

𝜕𝜃

𝜕vr

𝜕z

𝜕v𝜃
𝜕z

𝜕vz

𝜕z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8.14 Determine the form of the divergence of a (second-order) tensor 𝛁 ⋅ F in cylindrical
components. Answer:

er

{
𝜕Frr

𝜕r
+

Frr − F𝜃𝜃

r
+ 1

r

𝜕F𝜃r

𝜕𝜃
+

𝜕Fzr

𝜕z

}

+ e𝜃

{
𝜕Fr𝜃

𝜕r
+ 1

r

𝜕F𝜃𝜃

𝜕𝜃
+

Fr𝜃

r
+

F𝜃r

r
+
𝜕Fz𝜃

𝜕z

}

+ ez

{
𝜕Frz

𝜕r
+ 1

r

𝜕F𝜃z

𝜕𝜃
+

Frz

r
+
𝜕Fzz

𝜕z

}



Part Two
Stress
Tensors were introduced in Part One. This part defines and discusses stress as the first example
of a particular physical tensor. Although stress is familiar from strength of materials, the
emphasis here is on stress as a tensor. Because the stress discussed in this part is symmetric
(later we will see that not all stress measures are symmetric), many of the results, in particular
those in Chapters 10 and 11, apply to other symmetric tensors to be introduced later.
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9
Traction and Stress Tensor

9.1 Types of Forces

We have already said that continuum mechanics assumes an actual body can be described by
associating with it a mathematically continuous body. For example, we define the density at a
point P as

𝜌(P) = lim
ΔV→0

Δm
ΔV

where ΔV contains the point P and Δm is the mass contained in ΔV . Continuum mechanics
assumes that it makes sense, or at least is useful, to perform this limiting process even though
we know that matter is discrete on an atomic scale and, often, on larger scales, e.g., granular
materials or a fissured rock mass. More precisely, 𝜌 is the average density in a representative
volume around the point P. What is meant by a representative volume depends on the material
being considered and the scale of interest. For example, we can model a polycrystalline material
with a density that varies strongly from point to point in different grains. Alternatively, we
might use a uniform density that reflects the average over several grains. In a fissured rock
mass, the representative volume might be much larger, on the order of meters or tens of meters,
encompassing a sufficient number of fissures.

Just as we have considered the mass to be distributed continuously, so also do we consider
the forces to be continuously distributed. These may be of two types:

1. Body forces have a magnitude proportional to the mass and act at a distance, e.g., gravity,
magnetic forces (Figure 9.1). Body forces are computed per unit mass b or per unit volume
𝜌b:

b(x) = lim
Δm→0

Δf
Δm

The continuum hypothesis asserts that this limit exists, has a unique value, and is indepen-
dent of the manner in which Δm → 0.
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V

m = V

f(x, t)
x

e3

e2

e1

Figure 9.1 Illustration of the force Δf(x, t) acting on the volume element ΔV .

2. Surface forces are computed per unit area and are contact forces. They may be forces that
are applied to the exterior surface of the body or they may be forces transmitted from one
part of a body to another.

Consider the forces acting on and within a body (Figure 9.2). We can define the traction by
means of the following conceptual procedure: Slice the body by a surface R (not necessarily
planar) that passes through the point Q and divides the body into parts 1 and 2. Remove part
1 and replace it by the forces that 1 exerts on 2. The forces that 2 exerts on 1 are equal and
opposite. Now consider the forces exerted by 1 on 2 on a portion of the surface having area
ΔS and normal n at Q. We can replace the distribution of forces on this surface by a statically
equivalent force Δf and moment Δm at Q. We define the average traction on ΔS as

Δt(avg) = Δf
ΔS

Now we shrink C keeping point Q contained in C and define traction at a point Q by

t(n) = lim
ΔS→0

Δf
ΔS

(9.1)

1

2

R

Q

n

m

f
C S

Figure 9.2 The surface R passes through the point Q and divides the body into two parts. The curve C
contains Q and encloses an area ΔS. The unit normal to the surface at Q is n. The net force exerted by 1
on 2 across ΔS is Δf and the net moment is Δm.
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This is a vector that equals the force per unit area (intensity of force) exerted at Q by the
material of 1 (side into which n points) on 2. The traction is often called the “stress vector”
but we will use “stress ” exclusively to refer to a tensor.

In taking the limit (9.1) we have assumed that it is independent of the manner in which
ΔS → 0 and the choice of the surface ΔS as long as the normal at Q is unique. In addition
we have assumed that Δf varies continuously, there is no concentrated force at Q (though this
situation can be addressed), and that

lim
ΔS→0

Δm
ΔS

= 0

The last will necessarily be the case if the couple is due to distributed forces. The theory of
couple stresses does not make this assumption (see, e.g., Malvern 1988, pp. 217–220).

9.2 Traction on Different Surfaces

The traction depends on the orientation of the normal through the point. To establish the result
of reversing the normal, we will use Newton’s second law

∑
F = m

dv
dt

(9.2)

where F is the force, m is the mass, and v is the velocity. Now we apply this to a slice of
material of thickness h and area ΔS (Figure 9.3):

t(n)ΔS + t(−n)ΔS + 𝜌bΔSh = 𝜌ΔSh
dv
dt

where we have written the mass as 𝜌ΔSh. Dividing by ΔS yields

t(n) + t(−n) + 𝜌bh = 𝜌h
dv
dt

Letting h → 0 yields

t(n) = −t(−n) (9.3)

–n

n

t(–n)

t(n)

h

S

Figure 9.3 Tractions acting on opposite sides of a thin slice of material.
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x1

x2

x3

33

13

11
12

21

22

23

31

32

Figure 9.4 Illustration of the labeling of the components of the stress tensor. Remember that the cube
shown represents a point.

Thus, the traction vectors are equal in magnitude and opposite in sign on two sides of a surface.
In other words, reversing the direction of the normal to the surface reverses the sign of the
traction vector. We can express the traction on planes normal to the coordinate directions t(ei)

in terms of their components (Figure 9.4)

t(e1) = 𝜎11e1 + 𝜎12e2 + 𝜎13e3

t(e2) = 𝜎21e1 + 𝜎22e2 + 𝜎23e3

t(e3) = 𝜎31e1 + 𝜎32e2 + 𝜎33e3

These three equations can be written more compactly using the summation convention as

t(ei) = 𝜎ijej (9.4)

where the first index i denotes the direction of the normal to the plane on which the force acts
and the second index j denotes the direction of the force component. We can also express the
traction as the scalar product of ei with a tensor:

t(i) = ei ⋅ (𝜎mnemen)

The term in parentheses is the dyadic representation of the stress tensor𝜎 and the 𝜎ij are
its Cartesian components; 𝜎11, 𝜎22, 𝜎33 are normal stresses, and 𝜎12, 𝜎21, 𝜎32, 𝜎23, 𝜎31, 𝜎13 are
shear stresses. Typically, in engineering, normal stresses are positive if they act in tension. In
this case a stress component is positive if it acts in the positive coordinate direction on a face
with outward normal in the positive coordinate direction, or if it acts in the negative coordinate
direction on a face with outward normal in the negative coordinate direction. (Note that for
a bar in equilibrium the forces and tractions acting on the ends of the bar are in opposite
directions and have opposite signs, but these correspond to stress components of the same
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sign.) In geology or geotechnical engineering, the sign convention is often reversed because
normal stresses are typically compressive.

9.3 Traction on an Arbitrary Plane (Cauchy Tetrahedron)

Equation (9.4) gives the tractions on planes with normals in the coordinate directions but
we would like to determine the traction on a plane with a normal in an arbitrary direction.
Figure 9.5 shows a tetrahedron with three faces perpendicular to the coordinate axes and the
fourth (oblique) face with a normal vector n. The oblique face has area ΔS and the area of the
other faces can be expressed as ΔSi = niΔS (see Problem 1.7). The volume of the tetrahedron
is ΔV = (1∕3)hΔS where h is the distance perpendicular to the oblique face through the origin.
Applying Newton’s second Law (9.2) to this tetrahedron gives

t(n)ΔS + (−t(i)ΔSi) + 𝜌bΔV = 𝜌ΔV
dv
dt

In the second term, we have used (9.3) to express the sum of the forces acting on the planes
perpendicular to the negative of the coordinate directions. We divide by ΔS and let h → 0. The
result is

t(n) = t(i)ni = n1t(1) + n2t(2) + n3t(3)

Substituting (9.4) yields

t(n) = ni𝜎ijej = n ⋅ 𝝈

This expression associates a vector t(n) with every direction in space n by means of an
expression that is linear and homogeneous and, hence, establishes 𝝈 as a tensor. Since the n
appears on the right side we will omit it as a superscript on t hereafter. Because 𝝈 is a tensor,

x2

h
n

b V

–t(2) ΔS2

t(n) ΔS

–t(3) ΔS3

–t(1) Δs1

x3

x1

Figure 9.5 Tetrahedron with tractions acting on the faces.
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  12(x1 −    x1/2,x2)

  12(x1 +    x1/2, x2)

   21(x1,x2 +    x2/2)

   21(x1,x2 −    x2/2)

   x1

(x1, x2)

   x2

x1

x2

Figure 9.6 Shear stresses acting on a small element.

its components in a rectangular Cartesian system must transform according to (6.11) under a
rotation of the coordinates:

𝜎′ij = ApiAqj𝜎pq

where

Api = e′i ⋅ep

9.4 Symmetry of the Stress Tensor

We can also show that 𝜎 is a symmetric tensor. To this end we require that the sum of the
moments be equal to the moment of inertia multiplied by the angular acceleration for a small
cuboidal element centered at

(
x1, x2, x3

)
with edges Δx1, Δx2, and Δx3 (Figure 9.6). For

simplicity, consider the element to be subjected only to shear stresses 𝜎12 and 𝜎21 in the x1x2
plane (Δx3 is not shown). Taking account of the difference in position of the sides from the
center and summing the moments yields

[

𝜎12

(

x1 +
Δx1

2
, x2

)

+ 𝜎12

(

x1 −
Δx1

2
, x2

)]

Δx2Δx3
1
2
Δx1

−
[

𝜎21

(

x1, x2 +
Δx2

2

)

+ 𝜎21

(

x1, x2 −
Δx2

2

)]

Δx1Δx3
1
2
Δx2

= 𝛼
𝜌

12
(Δx1Δx2Δx3)

(
Δx2

1 + Δx2
2

)

where the Δx1∕2 and Δx2∕2 in the first two lines are the moment arms, and the third line is
the angular acceleration 𝛼 multiplied by the moment of inertia about the center. Dividing by
Δx1Δx2Δx3 and letting Δx1, Δx2 → 0 yields 𝜎21 = 𝜎12 and, similarly, 𝜎ij = 𝜎ji. Later we will
give a more general derivation of this result and see that it does not pertain when the stress is
defined per unit reference (as distinguished from current) area.
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Exercise

9.1 The stress state in a body occupying |x1| ≤ a, |x2| ≤ a, |x3| ≤ h is given by

𝜎11 = −p

(
x2

1 − x2
2

)

a2

𝜎22 = p

(
x2

1 − x2
2

)

a2

𝜎12 = 2px1x2∕a2

and 𝜎33 = 𝜎13 = 𝜎23 = 0. Calculate the traction vector on the face x1 = +a and the face
x1 = −a.

Reference

Malvern LE 1988 Introduction to the Mechanics of a Continuous Medium. Prentice Hall.





10
Principal Values of Stress

Because 𝜎 is a symmetric tensor it has three real principal values with at least one set of
orthogonal principal directions (see Chapter 2). The principal values 𝜆 and directions n satisfy
(7.1), rewritten here in index form with the current notation:

(𝜎ij − 𝜆𝛿ij)nj = 0 (10.1)

Rearranging this equation shows that the directions n satisfying this equation are those for
planes having only normal tractions. We will now rederive this equation by another approach.
In doing so, we will show that two of the principal values correspond to the largest and
smallest values of the normal stress on any plane. Because this derivation makes use of no
special properties of the stress, the result applies to the principal values of any (real) symmetric
tensor. Thus, it provides an alternative interpretation of the principal values as including the
largest and smallest normal components of the tensor.

The normal component of t in the direction n is

tn = n ⋅ 𝝈 ⋅ n = ni𝜎ijnj (10.2)

(Note that the subscript n is not an index here but designates the normal component.) We wish
to find the largest and smallest values of tn as the normal to the plane varies over all directions.
The ni are not, however, independent but are subject to the constraint

n ⋅ n = nini = 1 (10.3)

We could deal with this problem by using (10.3) to eliminate one of the ni or by using two
angles with respect to a coordinate system. The drawback of these approaches is that they
require specifying which of the ni are to be eliminated or how to define the angles. A more
elegant approach is to incorporate the constraint by using a Lagrange multiplier, here denoted
𝜎. The constraint multiplied by 𝜎 is added to ni𝜎ijnj. The derivative 𝜕 (…) ∕𝜕𝜎 = 0 then
returns the constraint equation (10.3). Now the ni can be treated as independent. The largest

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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and smallest (stationary) values of the normal traction (10.2) are obtained by differentiating
with respect to the nk:

𝜕

𝜕nk

{
ni𝜎ijnj − 𝜎(nini − 1)

}
= 0 (10.4)

Carrying out the differentiation in (10.4) yields

𝜕ni

𝜕nk
𝜎ijnj + ni𝜎ij

𝜕nj

𝜕nk
− 2𝜎ni

𝜕ni

𝜕nk
= 0 (10.5)

Recognizing that 𝜕ni∕𝜕nk = 𝛿ik, we can rewrite (10.5) as

𝜎kjnj + ni𝜎ik − 2𝜎nk = 0

or, after using the symmetry of 𝜎ij,

(𝜎kj − 𝜎𝛿kj)nj = 0

which is the same as (10.1). Therefore, the principal values of 𝜎ij, the roots of

det |𝜎kj − 𝜎𝛿kj| = 0

are the stationary values of tn. We denote these roots by

𝜎I > 𝜎II > 𝜎III

with corresponding principal directions n(I), n(II), and n(III). 𝜎I (𝜎III) is the largest (smallest)
normal stress. 𝜎II is a stationary value, i.e., the largest normal stress in the plane defined by
n(II) and n(III) and the smallest normal stress in the plane defined by n(I) and n(II). If two of
the principal values are equal, say 𝜎I = 𝜎II , then the direction n(III) is unique, but any rotation
about n(III) yields another set of principal axes.

From (7.8) we know that the principal values satisfy

𝜎3 − I1𝜎
2 − I2𝜎 − I3 = 0 (10.6)

where the coefficients are given by (7.9), (7.10), and (7.11) and other results from Chapter 7
also apply here.

10.1 Deviatoric Stress

It is often useful to separate the stress (or, indeed, any tensor) into a part with zero trace, called
the deviatoric part, and an isotropic tensor (see Section 6.4). The deviatoric stress is defined as

𝜎′ij = 𝜎ij −
1
3
𝛿ij𝜎kk
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or

𝝈′ = 𝝈 − 1
3

(tr 𝝈)I

By construction, the trace of the deviator, the first invariant, vanishes

tr 𝝈′ = I ⋅ ⋅𝝈′ = 0 (10.7)

Unless the equation for the principal values (10.6) is easy to factor, it is generally more
convenient to solve numerically. It is, however, possible to obtain a closed form solution for
the principal values of the deviatoric stress. Because the first invariant of the deviatoric stress
vanishes, i.e., (10.7), the equation for the principal values becomes

s3 − J2s − J3 = 0 (10.8)

where s is the principal value and the invariants J2 and J3 are given by

J2 = 1
2

tr(𝝈′ ⋅ 𝝈′) = 1
2
𝜎′ij𝜎

′
ji (10.9)

J3 = det(𝜎′ij) =
1
3

tr(𝝈′ ⋅ 𝝈′ ⋅ 𝝈′) = 1
3
𝜎′ik𝜎

′
kl𝜎

′
li (10.10)

The first of these (10.9) follows from (7.10) and the second from Problem 7.3. Making the
substitution

s =
(4

3
J2

)1∕2
sin 𝛼 (10.11)

in (10.8) and using some trigonometric identities yields

sin 3𝛼 =
−
√

27J3

2(J2)3∕2
(10.12)

or

𝛼 = 1
3
arcsin

(

−

√
27J3

2(J2)3∕2

)

(10.13)

This yields one root of (10.8). Two additional roots are given by 𝛼 ± 2𝜋∕3.

10.2 Example

Consider the stress tensor

𝝈 = 1
2
𝛼 (𝝀𝝁 + 𝝁𝝀)
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where 𝛼 is a scalar and 𝝀 and 𝝁 are unit vectors. Show that the principal direction of the
greatest principal value bisects 𝝀 and 𝝁.

To simplify the calculation, we can take 𝝀 = e1 and e3 perpendicular to the plane of 𝝀 and
𝝁. The stress then takes the form

𝜎 = 𝛼

{

cos(𝜃)e1e1 +
1
2
sin(𝜃)(e1e2 + e2e1)

}

where 𝜃 is the angle between𝝀 and𝝁. The principal values are𝛼 cos2(𝜃∕2), 0, and−𝛼 sin2(𝜃∕2).
The principal direction corresponding to cos2(𝜃∕2) is

cos(𝜃∕2)e1 + sin(𝜃∕2)e2

and hence bisects 𝝀 and 𝝁.

Exercises

10.1 The components of the stress tensor at a point are given by

[𝜎] =
⎡
⎢
⎢
⎢
⎣

−1 −2 0

−2 0 2

0 2 1

⎤
⎥
⎥
⎥
⎦

(a) Determine the principal stresses.
(b) Determine the principal directions.

10.2 The stress tensor is given by

𝝈 = 𝜏 cos 𝜃(e1e2 + e2e1) + 𝜏 sin 𝜃(e1e3 + e3e1)

(a) Determine the principal stresses.
(b) Determine the principal directions.

10.3 Show that J2 can be written in terms of the principal stresses as

J2 = 1
6

{
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2}

10.4 Fill in the details of using (10.11) in (10.8) to obtain (10.12).

10.5 Determine the value of the angle 𝛼 in (10.13) for the following stress states [Hint: Use
the result of Problem 10.3]:
(a) 𝜎2 = (1∕2)(𝜎1 + 𝜎3)
(b) 𝜎1 > 𝜎2 = 𝜎3
(c) 𝜎1 = 𝜎2 > 𝜎3

10.6 Show that the principal directions for the deviatoric stress are the same as those for the
stress.



11
Stationary Values of Shear Traction

In Chapter 10, we answered the question “For a given state of stress what are the orientations
of the planes that have the maximum and minimum normal stress?” We found that these are
the principal planes, planes on which there is no shear traction. We can ask a similar question
about the shear traction: “What is the maximum value of the shear traction and on what plane
does it occur?”

The traction on a plane with a normal n can be resolved into a normal component tn = n ⋅ t,
where t = n ⋅ 𝝈, and shear a component ts

t = (n ⋅ t)n + tss

where n ⋅ s = 0 (Figure 11.1). Rearranging as

tss = t − tnn

and forming the scalar product of each side with itself yields the square of the magnitude of
the shear traction

t2s = t ⋅ t − t2n

or, in component form in terms of the stress,

t2s = (np𝜎pq)(nr𝜎rq) − (np𝜎pqnq)2 (11.1)

Because the sign of the shear traction has no physical significance (unlike the sign of the
normal traction, which indicates tension or compression), there is no loss of generality in
working with the square of the shear traction.

Just as we did for the normal stress, we want to let n vary over all directions and find the
largest and smallest values of the shear traction. Thus, we want to find stationary values of the
shear traction, subject to the condition

n ⋅ n = nknk = 1

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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n

t

tnn

tss

s

Figure 11.1 Traction on a plane with normal n resolved into shear and normal components.

To facilitate the calculation, we choose the principal directions as coordinate axes e1, e2, and
e3 with corresponding principal stresses 𝜎1, 𝜎2, and 𝜎3. Consequently, the stress tensor and
unit normal to the plane can be written as

𝝈 =
∑

k

𝜎kekek = 𝜎1e1e1 + 𝜎2e2e2 + 𝜎3e3e3 (11.2)

n =
∑

k

nkek = n1e1 + n2e2 + n3e3 (11.3)

Summation is indicated explicitly in (11.2) since the subscript “k” appears three times and, for
clarity, summation is also explicit in (11.3). Then the traction on the plane with normal n is

t = n ⋅ 𝝈 =
∑

l

nlel ⋅
∑

k

𝜎kekek

=
∑

k

nk𝜎kek = n1𝜎1e1 + n2𝜎2e2 + n3𝜎3e3

The normal traction is

tn = n ⋅ 𝝈 ⋅ n =
∑

k

n2
k𝜎k = n2

1𝜎1 + n2
2𝜎2 + n2

3𝜎3

The first term of (11.1) is

∑

k

nk𝜎kek ⋅
∑

k

nk𝜎kek =
∑

k

n2
k𝜎k

2

Forming the shear traction (11.1) and taking the derivative

𝜕

𝜕nl

{
t2
s + 𝜆

(
nknk − 1

)}
= 0
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yields

nl

{
𝜎2

l − 2𝜎ltn + 𝜆
}
= 0 (no sum on l)

where 𝜆 is the Lagrange multiplier. Writing out the three equations for l = 1, 2, 3 gives

n1

{
𝜎2

1 − 2𝜎1tn + 𝜆
}
= 0 (11.4)

n2
{
𝜎2

2 − 2𝜎2tn + 𝜆
}
= 0 (11.5)

n3

{
𝜎2

3 − 2𝜎3tn + 𝜆
}
= 0 (11.6)

There are three possible cases corresponding to one, two, or none of the nl being zero.
Case 1: Suppose, for example, that n2 = n3 = 0; then n1 = 1. Equations (11.5) and (11.6)

are automatically satisfied. The only non-trivial equation (11.4) reduces to

𝜎2
1 − 2𝜎1tn + 𝜆 = 0

For n2 = n3 = 0, n1 = 1, tn = 𝜎1, and, consequently, 𝜆 = 𝜎2
1 . Substituting back into (11.1)

yields t2s = 0. Because n1 = e1 is a principal direction, this result simply confirms that the
shear traction is zero on principal planes.

Case 2: Now suppose that n1, n2 ≠ 0 and n3 = 0. Equation (11.6) is automatically satisfied
and (11.4) and (11.5) become

𝜎2
1 − 2𝜎1tn + 𝜆 = 0

𝜎2
2 − 2𝜎2tn + 𝜆 = 0

Eliminating 𝜆 and rearranging gives

(𝜎1 − 𝜎2)(𝜎1 + 𝜎2) = 2(𝜎1 − 𝜎2)tn

Assuming 𝜎1 ≠ 𝜎2, writing

tn = (n2
1𝜎1 + n2

2𝜎2)

and substituting n2
2 = 1 − n2

1 yield

n2
1 = 1

2
or n1 = ± 1

√
2

and, consequently,

n2 = ± 1
√

2
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Taking the plus signs and substituting into expression (11.1) gives

t2
s =

∑

k

n2
k𝜎

2
k −

[
∑

k

(nk𝜎knk)

]2

= 1
2

(𝜎2
1 + 𝜎2

2) − 1
4

(𝜎1 + 𝜎2)2 = 1
4

(𝜎1 − 𝜎2)2

or

(ts)max =
1
2
|𝜎1 − 𝜎2| (11.7)

Case 3: If all nl ≠ 0, then the principal stresses cannot be distinct. If two of the principal
stresses are equal, the normal to the plane of greatest shear traction can be within a cone at 45◦

to the principal direction of the distinct principal stress. Because any two directions within the
plane of the equal principal stresses can be principal directions, it is always possible to choose
them so that one of the ni can be zero. Thus this case effectively reduces to Case 2. If all of
the principal stresses are equal, t2

s ≡ 0 on all planes.
Equation (11.7) gives the maximum shear traction on planes with normals in the 1 and 2

planes. The same calculation yields corresponding results for normals in the 1 and 3 and 2 and
3 planes. Therefore the absolute maximum value of ts occurs on a plane with a normal that
makes a 45◦ angle with the principal directions corresponding to the maximum and minimum
principal stresses.

The derivation here has been for the stress tensor, but the same results apply for symmetric
tensors with other physical interpretations.

11.1 Example: Mohr–Coulomb Failure Condition

The Mohr–Coulomb criterion is a common failure condition for geomaterials loaded in com-
pression. The criterion states that failure occurs when the magnitude of the shear traction on
a plane ts is equal to the cohesion 𝜏0 minus a friction coefficient 𝜇 multiplied by the normal
traction on that plane tn (tn < 0 for compression):

|ts| = 𝜏0 − 𝜇tn (11.8)

What is the orientation of the plane on which this criterion is first met?
Let the axes coincide with the principal stress directions so that the stress tensor is given by

𝝈 = −𝜎1e1e1 − 𝜎2e2e2 − 𝜎3e3e3

where 𝜎3 > 𝜎2 > 𝜎1 > 0. Because the maximum shear stress occurs in the e1e3 plane, we
assume that the normal to the plane of interest is also in this plane. Let the normal to this plane
make an angle 𝛼 with e1:

n = cos (𝛼) e1 + sin (𝛼) e2
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and the tangent be

s = − sin (𝛼) e1 + cos (𝛼) e2

The normal component of the traction is

tn = −1
2

(𝜎1 + 𝜎3) + 1
2

(𝜎3 − 𝜎1) cos(2𝛼) (11.9)

and the shear component is

ts = −1
2

(𝜎3 − 𝜎1) sin(2𝛼) (11.10)

where we have used the double angle formulae

cos2 (𝛼) = 1
2

(1 + cos 2𝛼)

sin2 (𝛼) = 1
2

(1 − cos 2𝛼)

Note that

|ts| =
⎧
⎪
⎨
⎪
⎩

1
2

(𝜎3 − 𝜎1) sin(2𝛼), 0 ≤ 𝛼 ≤ 𝜋∕2

−1
2

(𝜎3 − 𝜎1) sin(2𝛼), −𝜋∕2 ≤ 𝛼 ≤ 0

Setting 𝜇 = tan𝜙, substituting (11.10), and (11.9) into (11.8), and rearranging gives

1
2

(𝜎3 − 𝜎1)
sin (𝜙 ± 2𝛼)

cos𝜙
= 𝜏0 +

1
2
tan𝜙 (𝜎1 + 𝜎3)

Thus, the smallest value of (𝜎3 − 𝜎1)∕2 that meets the criterion occurs at the orientation 𝛼 that
makes sin (𝜙 ± 2𝛼) largest; that is, when

𝜕

𝜕𝛼
sin (𝜙 ± 2𝛼) = 0

or

𝛼 = ±
(
𝜋

4
− 𝜙

2

)

Substituting back into (11.8) gives the relation between the principal stresses 𝜎1 and 𝜎3 at
failure:

1
2
𝜎3 (1 − sin𝜙) = 1

2
𝜎1 (1 + sin𝜙) + 𝜏0 cos𝜙
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Exercises

11.1 Carry out the details of Case 3 to show that if all nl ≠ 0, then the principal stresses
cannot be distinct.

11.2 The components of the stress tensor at a point are given by

[𝜎] =
⎡
⎢
⎢
⎢
⎣

−1 −2 0

−2 0 2

0 2 1

⎤
⎥
⎥
⎥
⎦

(a) Determine the traction on a plane with unit normal n = (e1 + 2e2 + 2e3)∕3.
(b) Determine the magnitude of the normal traction and the magnitude of the shear

traction on this plane.

11.3 The stress tensor is given by

𝜎 = Tuu

where u is a unit vector and T > 0.
(a) Determine the traction on a plane with normal that makes an angle 𝜃 with u.
(b) Determine the normal value of the traction on this plane.
(c) Determine the magnitude of the tangential component of the traction on this plane.

11.4 For the stress tensor given in Problem 10.2 determine the maximum shear stress and
the plane on which it occurs.

11.5 Show that the shear traction vanishes on every plane if and only if the stress tensor is
given by 𝝈 = −pI, where p is a scalar and I is the identity tensor.

11.6 Let the stress tensor be given by 𝝈 = 𝜎1e1e1 + 𝜎2e2e2 + 𝜎3e3e3.
(a) Determine the traction vector on a plane with a normal that makes equal angles

with the coordinate directions.
(b) Determine the normal component of the traction on this plane.
(c) Show that the magnitude of the shear component can be expressed as

ts =
1
3

{
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2}1∕2

and, hence, J2 = (3∕2) t2s from Problem 10.3.
(d) Determine the direction of the shear traction.

11.7 Let the principal stresses at a point satisfy the relation 𝜎2 = 1
2
(𝜎1 + 𝜎3) > 0. Determine

the orientation of the plane (relative to the principal axes) on which the normal traction
is tn = 𝜎2 and the shear (tangential) traction is ts = (𝜎1 − 𝜎3)∕4.



12
Mohr’s Circle

Mohr’s circle is a graphical construction that is familiar to students of mechanics of materials.
Although it has long outlived its usefulness as a computational aid, it provides a physical
illustration of the meaning of a tensor, in particular the stress tensor. In addition, it is a point
of contact between the present treatment and mechanics of materials. In three dimensions,
it is most useful when at least one of the principal values of the stress is already known.
Here, the x3 direction is assumed to be a principal direction (Figure 12.1) for the stress tensor.
Consequently, the stress tensor can be written as

𝝈 = 𝜎𝛾𝛿e𝛾e𝛿 + 𝜎IIIe3e3

where 𝛾 , 𝛿 = 1, 2.
Now consider the traction components on a plane with normal n making an angle 𝛼 with

the x1 axis as shown in Figure 12.2. The normal and tangent vectors are

n = cos 𝛼e1 + sin 𝛼e2 (12.1)

s = − sin 𝛼e1 + cos 𝛼e2 (12.2)

When 𝛼 = 0◦, tn = 𝜎11 and ts = 𝜎12, and when 𝛼 = 90◦, tn = 𝜎22 and ts = −𝜎12. This means
that shear stress components tending to cause a clockwise moment are plotted as negative in
Mohr’s circle (even though the shear stress components themselves may be positive). This
difference in sign results from the difference between the component of the traction, which
is a vector, and the component of the stress, which is a tensor. Alternatively, we could have
taken the positive s direction to be clockwise from n, in which case the signs on the shear
traction would be reversed. This choice governs whether the rotation in the Mohr plane, which
plots ts against tn, is in the same or the opposite direction as the rotation in the physical plane.
(Malvern (1988) describes both conventions.)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



90 Fundamentals of Continuum Mechanics

x1

x2

x3

22

21

12

11

Figure 12.1 Element for analysis with Mohr’s circle. The x3 direction is a principal direction.

The traction vector on the inclined plane in Figure 12.2 is

t = n ⋅ 𝜎 = cos 𝛼(𝜎11e1 + 𝜎12e2) + sin 𝛼(𝜎21e1 + 𝜎22e2)

The normal component is

tn = n ⋅ t = 1
2

(𝜎11 + 𝜎22) − 1
2

(𝜎22 − 𝜎11) cos 2𝛼 + 𝜎12 sin 2𝛼

and the shear component is

ts = s ⋅ t = 1
2

(𝜎22 − 𝜎11) sin 2𝛼 + 𝜎12 cos 2𝛼

ts
tn

n

S

x2

x1

Figure 12.2 Normal, tn, and shear, ts, tractions on an inclined plane with normal n.



Mohr’s Circle 91

where we have used the double angle formulae:

cos2 𝜃 = 1
2

(1 + cos 2𝜃)

sin2 𝜃 = 1
2

(1 − cos 2𝜃)

sin 2𝜃 = 2 cos 𝜃 sin 𝜃

Forming

[{

tn −
1
2

(𝜎11 + 𝜎22)
}2

+ t2s

]

= R2

gives the equation of a circle in the plane ts vs. tn (Figure 12.3). The center of the circle is at
tn = 1

2
(𝜎11 + 𝜎22) and the radius is

R =
√

{1
2

(𝜎11 − 𝜎22)
}2

+ (𝜎12)2

The points on the circle give the values of ts and tn as the angle 𝛼 varies. Because these all
originate from the same stress state shown in Figure 12.1, the circle is a graphical representation
of a tensor in two dimensions. The center and radius are invariants of the two-dimensional
stress state. The traction on the plane perpendicular to the x1 direction is represented by the
point (𝜎11, 𝜎12) corresponding to 𝛼 = 0◦, and the traction on the plane perpendicular to the
x2 direction is represented by the point (𝜎22,−𝜎21) corresponding to 𝛼 = 90◦. (The points are
depicted in Figure 12.3 assuming 𝜎11 > 𝜎22 and 𝜎12 > 0.) Although 𝜎12 = 𝜎21, the minus sign
is necessary for the point corresponding to 𝜃 = 90◦ because, when the plane in Figure 12.2 is
oriented perpendicular to the x2 direction, s and 𝜎21 point in opposite directions. As already
noted, this feature occurs because Mohr’s circle is a plot of the components of traction, a
vector, whereas stress is a tensor.

( , )11 12

tn

ts

R

Figure 12.3 Mohr’s circle.
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It is obvious from the geometry of the circle that the largest and smallest values of the normal
traction are the principal stresses 𝜎I,II =

1
2
(𝜎11 + 𝜎22) ± R and that these occur on planes where

the shear traction is zero, ts = 0. The points corresponding to the principal stresses lie at the
opposite ends of a diameter, 180◦ apart in the Mohr plane. We know from Chapter 7 and
Chapter 10 that the principal stresses occur on orthogonal planes. Also, the magnitude of the
shear traction is greatest at the points at the top and bottom of the circle. These points are 90◦

from the points corresponding to the principal stresses in the Mohr plane. In Chapter 10 we
showed that the maximum magnitude of shear traction occurs on planes 45◦ from the principal
planes and these are represented by points 90◦ from the points in the Mohr plane representing
the principal planes.

These observations make it clear that planes with normals 𝛼 apart in the physical plane are
represented by points 2𝛼 apart in the Mohr plane. Consequently, the angle between the x1
direction and the normal to the principal plane on which 𝜎I acts is

𝛽 = 1
2
arctan

(
2𝜎12

𝜎11 − 𝜎22

)

The question that remains is whether the rotation in the Mohr plane is in the same sense
as in the physical plane. This depends on whether the positive direction for vector s is
taken to be a clockwise or counterclockwise rotation from the direction of the normal n. For
the counterclockwise rotation for s, as assumed in Figure 12.1, rotations in the Mohr plane
correspond to rotations in the opposite sense in the physical plane. In other words, a clockwise
rotation in the Mohr plane corresponds to a counterclockwise rotation of the normal in the
physical plane. This can be confirmed by using the methods of Chapter 7 to find orientations
of the principal directions.

Mohr’s circle also can be used to visualize the change in stress components due to a
rotation of the coordinate axes. Taking 𝛼 = 𝜃 and 𝛼 = 𝜃 + 90◦ in Figure 12.2 locates points
corresponding to the stress components for a rotation of coordinate axes through an angle 𝜃.
This is shown in Figure 12.4.

x2

x1

x2
′

x1
′

( , )11 12

ts

tn

R 2 ( , )11 12′ ′

′′

′
′

′
′

Figure 12.4 Illustration of Mohr’s circle representation of the change in stress components due to a
rotation of axes through a counterclockwise angle 𝜃.
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ts

tn

Figure 12.5 Schematic of the Mohr’s circles for the planes of each pair of principal stresses. All
possible values of the traction components ts and tn lie in the shaded area between the circles.

Figure 12.3 illustrates how the traction and stress components vary on orientations in the
plane of 𝜎I and 𝜎II . Similar constructions apply for the planes of 𝜎II and 𝜎III and 𝜎I and 𝜎III .
Thus, there are three circles as depicted in Figure 12.5. The possible values of the traction
components ts and tn occupy the shaded region between the circles.

Exercises

12.1 For each of the following stress states (values not given are zero), sketch the three
Mohr’s circles. What is the maximum shear stress in each case, and what is the normal
stress on the plane of maximum shear stress (a and 𝜎 are positive constants)?
(a) Uniaxial compression, 𝜎11 = −𝜎.
(b) Biaxial stress, 𝜎11 = +a, 𝜎22 = −3a.
(c) Hydrostatic compression of magnitude 𝜎.
(d) 𝜎12 = 𝜎21 = 3a, 𝜎23 = 𝜎32 = 4a.
(e) 𝜎11 = −5a, 𝜎22 = −a, 𝜎33 = a.

12.2 Discuss the position of the point corresponding to the plane in Problem 11.7 in relation
to the Mohr’s circles.

12.3 Use Mohr’s circle to obtain the result of Example 11.1.

Reference

Malvern LE 1988 Introduction to the Mechanics of a Continuous Medium. Prentice Hall.





Part Three
Motion and
Deformation
In this part we develop mathematical descriptions of the geometry of motion and deformation.
The descriptions are purely kinematic; that is, we do not consider the forces that give rise to
the motion and deformation. The descriptions will not make assumptions about the magnitude
of the deformations, but there are various possibilities of description that are more convenient
for different types of problems. To this end, we will introduce a number of tensors and make
use of the material in Chapter 2, Chapter 3, and, for symmetric tensors, Chapter 7.
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13
Current and Reference
Configurations

Figure 13.1 shows two configurations of an arbitrary body: The reference configuration at
some time t0 and the current configuration at time t ≥ t0. The reference configuration can be
chosen for convenience in analysis. For example, for an elastic body, it is usually convenient to
choose the reference configuration as the configuration when the loads are reduced to zero. For
an elastic–plastic body or a fluid, it is often convenient to choose the reference configuration
to coincide with the current configuration and to focus on increments or rates from the current
configuration.

In Figure 13.1 P0(X) is the position of a material particle in the reference configuration. The
same material particle is located at P(x) in the current configuration. Here, positions in both
the reference configuration and the current configuration are referred to the same rectangular
Cartesian coordinate system. This is not necessary and, often, it is more convenient to refer
positions in the two configurations to different coordinate systems. The motion of the material
particle is described by

x = 𝝓(X, t) (13.1)

or

x = 𝝓(X1, X2, X3, t) (13.2)

and is usually abbreviated

x = x(X, t) (13.3)

The notation in (13.3), although ubiquitous, can be confusing. In (13.1) or (13.2) x is used to
denote the value of the function 𝝓 for a particular X and t. In (13.3) x denotes both the function
𝝓 and its value for a particular X and t. In words, these expressions say that “x is the position at
time t of the particle that occupied position X in the reference configuration at time t = t0.” In
this description x is regarded as the dependent variable; X is the independent variable. Because
each material particle occupies a unique position in the reference configuration, the position
X can be used as a label for the particle. That is, different values of X correspond to different

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
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V

t t> 0t t0

V0

P0(X)
P(x)

x
X

e1

e3

e2

(current configuration)(reference configuration)

Figure 13.1 Schematic of the reference and current configurations.

material particles. The position x may, however, be occupied by different material particles at
different times.

An analogy is to consider students as material particles. Rather than referring to them by
name, student ID, social security number, etc., we can refer to them by their position at a
particular time, say the class period 9 to 10 a.m. Thus, each student is labeled by the position
of his or her seat in the class, for example, the third seat from the left in the second row. This is
the reference configuration and the seat is X. After the class period the students go about their
business moving to other locations, but we continue to refer to them by the location of their
seat during the class period. At some time t after the class period, say 2 p.m., the student who
occupied the third seat from the left in the second row in the reference configuration will be at
a position x in the student union. During other times of the day, different students will occupy
that position. Hence an observer standing in the student union would see different students
(material particles) occupy the position x at different times.

Physically, it is plausible that the motion can be inverted because each and every point
in the reference configuration corresponds to exactly one point in the current configuration.
Therefore, at least in principle, we can invert the motion to write the position in the reference
configuration X in terms of time and the current location x:

X = Φ(x, t) or X = X(x, t) (13.4)

Now we regard x as the independent variable. The mathematical condition insuring that (13.1)
can be inverted is

J =
|
|
|
|

𝜕x
𝜕X

|
|
|
|
=
|
|
|
|
|

𝜕xi

𝜕Xj

|
|
|
|
|

> 0 (13.5)

The left side is the determinant of a particular tensor to be introduced in the next chapter.
Because the determinant of this tensor does not vanish, its inverse exists as discussed following
(5.8). We will show that (13.5) expresses the physical requirement that small volume elements
in both the reference and current configurations are finite and positive.

When X is used as the independent variable, this is often called the Lagrangian description.
Because different values of X correspond to different positions in the reference configuration
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and hence different material particles, the Lagrangian description follows a material particle
through the motion. A physical example is following the motion of a radioactive particle or a
group of particles marked with dye.

The Eulerian description uses x as independent variable. This point of view considers a fixed
location in space and observes how the material particles move past this location. Because
a fixed value of x refers to a fixed location, it does not correspond to a particular material
particle; that is, different particles will move past this location as time evolves. A physical
example is measurement by an instrument at a fixed location as different particles move past.

If the motion, (13.1), (13.2), or (13.3), is known, the velocity can be computed simply as
the rate of change of the location with time:

V(X, t) = 𝜕x
𝜕t

=
𝜕𝝓

𝜕t
(X, t) (13.6)

Because 𝜕∕𝜕t means to take the derivative with respect to time while holding the other
arguments, i.e., X, fixed, (13.6) gives an expression for the velocity of the particle that was
located at X at time t0. (Note that this particle is not now, at time t, located at X.) Thus, (13.6) is
the Lagrangian description of the velocity. We will use upper case letters to denote quantities
given in terms of the Lagrangian description.

To get the Eulerian description, we substitute (13.4) into the argument of (13.6)

v(x, t) = V [Φ (x, t) , t] (13.7)

Note that if x is the current position of the particular particle that was located at X in the
reference configuration then the values of the velocity given by (13.6) and (13.7) must be
equal.

Now, consider any scalar property 𝜃, e.g., temperature, density. The Eulerian description is

𝜃 = 𝜃(x, t) (13.8)

and the Lagrangian description is

Θ = Θ(X, t) (13.9)

The partial derivative of (13.8)

𝜕𝜃

𝜕t

|
|
|
|x fixed

gives the rate of change of 𝜃 at a fixed location in space. This is not the rate of change of 𝜃 of
any material particle because different particles occupy the location x as time t changes. The
partial derivative of (13.9)

𝜕Θ
𝜕t

|
|
|
|X fixed

(13.10)

does give the rate of change of Θ for a specific material particle.



100 Fundamentals of Continuum Mechanics

Can we compute the rate of change of Θ for a material particle if we are given only 𝜃(x, t)?
Mathematically, this can be expressed as follows:

𝜕Θ
𝜕t

(X, t) = d𝜃
dt

|
|
|
|X fixed

Because the right hand side is evaluated for fixed X, the location of the particle, x, changes
with time. Therefore, by the chain rule of differentiation,

d𝜃
dt

|
|
|
|X fixed

= 𝜕𝜃

𝜕t
(x, t)

|
|
|
|x fixed

+ 𝜕𝜃

𝜕xi

𝜕xi

𝜕t
(13.11)

Note that 𝜕xi∕𝜕t is the component form of the velocity of a particle and 𝜕𝜃∕𝜕xi are the
components of the gradient of 𝜃. Thus (13.11) can be written in coordinate-free vector
form as

d𝜃
dt

= d𝜃
dt

|
|
|
|X fixed

= 𝜕𝜃

𝜕t

|
|
|
|x fixed

+ v(x, t) ⋅ 𝛁𝜃 (13.12)

Equation (13.12) gives the rate of change of 𝜃 following a material particle or the material
derivative. The designation X fixed is usually omitted and to be understood. The derivative
(13.12) is the same as what is called the total derivative in calculus but here has the specific
meaning of following a material particle. Because holding x fixed in the first term on the right
corresponds to the usual meaning of the partial derivative, the notation explicitly indicating
that x is fixed is usually omitted. Note that in order to compute the material rate of change of
𝜃(x, t), it is necessary to know not only the change of 𝜃 at a particular location x, 𝜕𝜃∕𝜕t, but
also how 𝜃 is changing in an infinitesimal interval about x, 𝜕𝜃∕𝜕xi. The expressions (13.10)
and (13.12) must give the same value if they are evaluated for the same particle at the same
time, regardless of whether the particle is specified by its current location or its location in the
reference configuration.

Similarly, the material rate of change can also be computed for a vector property 𝜇(x, t):

d𝝁
dt

(x, t) =
(
𝜕𝝁

𝜕t

)|
|
|
|
|x fixed

+ v ⋅ (𝛁𝝁)

If 𝝁 = v, the velocity, then the material derivative gives the Eulerian description of the accel-
eration

a(x, t) = dv
dt

(x, t) = 𝜕v
𝜕t

+ v ⋅ 𝛁v

The Lagrangian description of the acceleration is

A(X, t) = 𝜕V(X, t)
𝜕t
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Figure 13.2 Example of steady flow of an incompressible fluid down a converging channel. Because
the flow is steady, the velocity does not change at any fixed location, 𝜕v∕𝜕t = 0. But because particles
increase their velocity as they move down the channel, the acceleration is nonzero.

Flow of an incompressible fluid down a converging channel illustrates the difference between
the material derivative d∕dt and 𝜕∕𝜕t. In Figure 13.2 the flow is steady, meaning that 𝜕v∕𝜕t = 0
because the velocity does not change at any fixed location. But the acceleration dv∕dt ≠ 0
because material particles increase their velocity as they move down the channel. In Figure 13.3
the fluid is initially at rest. Then the fan is turned on. Consequently, the velocity of (different)
particles passing a fixed location changes with time, 𝜕v∕𝜕t ≠ 0.

When does 𝜕𝜃∕𝜕t = d𝜃∕dt for a property 𝜃? This will be true if the second term in (13.12)
vanishes

v ⋅ 𝛁𝜃 = 0

There are three possibilities: (i) v = 0 so that there is no motion; (ii) 𝛁𝜃 = 0 so that 𝜃 is
spatially uniform; (iii) v is perpendicular to 𝛁𝜃. An example of (iii) is a motion in which the
only nonzero component of velocity is in the x1 direction, v = v1e1, 𝜃 is temperature, and there
is a gradient of temperature only in the x2 direction.

Figure 13.3 In this example, the material is initially at rest and then the fan is turned on. Consequently,
the velocity is changing at fixed spatial locations and 𝜕v∕𝜕t ≠ 0.
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13.1 Example

The motion of a rigid body can be described by

x(X, t) = Q(t) ⋅ X + c(t) (13.13)

Determine expressions for the Lagrangian descriptions of velocity and acceleration. Also
determine expressions for the Eulerian descriptions of velocity and acceleration.

The Lagrangian velocity and acceleration are simply

V(X, t) = Q̇(t) ⋅ X + ċ(t) (13.14)

and

A(X, t) = Q̈(t) ⋅ X + c̈(t) (13.15)

To obtain the Eulerian descriptions of velocity and acceleration, we solve (13.13) for

X(x, t) = Q−1(t) ⋅ {x − c(t)}

and substitute into (13.14) and (13.15) to get

v(x, t) = Q̇(t) ⋅ Q−1(t) ⋅ {x − c(t)} + ċ(t)

and

a(x, t) = Q̈(t) ⋅ Q−1(t) ⋅ {x − c(t)} + c̈(t) (13.16)

The Eulerian description of acceleration can also be obtained by using the material derivative:

a(x, t) = 𝜕

𝜕t
v + v ⋅ 𝛁v (13.17)

The first term is

𝜕

𝜕t
v =

{

Q̈(t) ⋅ Q−1(t) + Q̇(t) ⋅
𝜕

𝜕t

(
Q−1(t)

)}

⋅ {x − c(t)}

− Q̇(t) ⋅ Q−1(t) ⋅ ċ(t) + c̈(t) (13.18)

To calculate 𝜕(Q−1(t))∕𝜕t, we differentiate

Q(t) ⋅ Q−1(t) = I

and form the tensor product of each side with Q−1(t) to obtain

𝜕

𝜕t
(Q−1(t)) = −Q−1(t) ⋅ Q̇(t) ⋅ Q−1(t) (13.19)
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Noting that

𝛁v = Q̇(t) ⋅ Q−1(t) (13.20)

and substituting (13.20) into (13.17) along with the result of substituting (13.19) into (13.18)
yields (13.16).

Exercises

13.1 (a) Determine the motion that deforms the unit square to the rhombus shown in
Figure 13.4, where 𝛾 = 𝛾(t).

(b) Determine the Lagrangian and Eulerian descriptions of the velocity.
(c) Invert the motion to determine the position in the reference configuration in terms

of the current position.

e2

e1

γ (t)

Figure 13.4 Simple shear deformation

13.2 The components of the velocity in a material are given by vi = xi∕(1 + kt) and the
temperature is given by 𝜃 = x1 + ktx2 where t is time and k is a constant with dimension
(time)−1.
(a) Calculate the components of the acceleration.
(b) Calculate the material rate of change of the temperature.

13.3 Consider the motion

x = X(1 + kt)

where t is time and k is a constant with dimension (time)−1.
(a) Determine the Eulerian (spatial) and Lagrangian (material) descriptions of the

velocity.
(b) Determine the Lagrangian (material) description of the acceleration.
(c) Determine the Eulerian (spatial) description of the acceleration in two ways: By

inverting the motion and using your answer from (a); and by taking the material
derivative of your answer in (b).
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13.4 Consider the motion

x1 = X1 + X2(et − 1)

x2 = X1(e−t − 1) + X2

x3 = X3

(a) Determine the expressions for the Lagrangian description of velocity and acceler-
ation.

(b) Determine the expressions for the Eulerian description of velocity.
(c) Determine the Eulerian description of the acceleration in two ways: By inverting

the motion and using your answer from (a); and by taking the material derivative
of your answer in (b).



14
Rate of Deformation

14.1 Velocity Gradients

In some cases, the reference configuration is not of interest. We are not concerned with the
locations of particles at some past time, but only with the instantaneous velocity field. For
example, in the flow of a fluid, a configuration at a past time is generally not useful (or even
possible to identify). In other cases, the past location of particles is of interest but the response
depends on the history of deformation. Consequently, the solution needs to be determined
incrementally, i.e., step by step. This corresponds to taking the reference configuration as
instantaneously coincident with the current configuration and updating it at each increment.

Consider a velocity field v(x) as shown in Figure 14.1. Although the particles were at points
P and Q in the reference configuration, we are interested only in the instantaneous velocities
of these points at their current locations p and q. The difference between the velocity of a
particle located at x and a particle located at x + dx at the current time is

dv = v(x + dx) − v(x)

or, in component form,

dvk = vk(x + dx) − vk(x) =
𝜕vk

𝜕xl
dxl (14.1)

where t has been omitted as an argument. The last equality in (14.1) can be rationalized by
expanding vk(x + dx) in a Taylor series and retaining only first terms (as we did earlier in
determining the form for the gradient of a vector, (8.4) to (8.7)). We can write this result in
coordinate-free form as

dv = L ⋅ dx = dx ⋅ LT (14.2)

where

L = (𝛁v)T (14.3)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
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Q

dX

P

dx

q

v(x)

v(x+dx)=v+dv

p

Figure 14.1 Illustration of the velocity difference at points p and q in the current configuration that are
separated by an infinitesimal distance dx.

and is given in component form by

Lkl =
𝜕vk

𝜕xl
= vk,l

L is the (spatial) velocity gradient tensor. The symmetric part of L

D = 1
2

(L + LT ) (14.4)

is the rate-of-deformation tensor and the anti- or skew-symmetric part of L

W = 1
2

(L − LT ) (14.5)

is the spin tensor or vorticity tensor.

14.2 Meaning of D

The meaning of D can be established by considering the rate of change of the length of an
infinitesimal line segment dx. The length squared is

ds2 = dx ⋅ dx

Differentiating with respect to time gives

2 ds
d
dt

(ds) = dv ⋅ dx + dx ⋅ dv

where we have used

d
dt

(dx) = d
(dx

dt

)

= dv
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Using (14.2) gives

2 ds
d
dt

(ds) = dx ⋅ LT ⋅ dx + dx ⋅ L ⋅ dx = 2 dx ⋅ D ⋅ dx

Dividing by 2 ds2 yields

1
ds

d
dt

(ds) = d
dt

ln(ds) = n ⋅ D ⋅ n

Thus, n ⋅ D ⋅ n is the fractional rate of extension in direction n = dx∕ds. Normal components
of D give the fractional rates of extension of line segments in the coordinate directions. Since
D is a symmetric tensor, it has three real principal values with orthogonal principal directions.
The same derivation used in Chapter 10 for the stress tensor demonstrates that these principal
values are stationary values, including the largest and smallest values, of n ⋅ D ⋅ n over all
orientations.

To investigate the meaning of the off-diagonal components of D we consider the rate of
change of the scalar product between two infinitesimal line segments dxA and dxB

dxA ⋅ dxB = dsA dsB cos 𝜃

where dsA and dsB are the lengths of dxA and dxB, respectively, and 𝜃 is the angle between
them. Taking the time derivative of both sides,

d
dt

(dxA ⋅ dxB) = d
dt

(dsAdsB cos 𝜃)

gives

dvA ⋅ dxB + dxA ⋅ dvB = d
dt

(dsA) dsB cos 𝜃 + dsA
d
dt

(dsB) cos 𝜃 − dsA dsB sin 𝜃�̇� (14.6)

Using (14.2) and regrouping yields

2
dxA

dsA
⋅ D ⋅

dxB

dsB
=
{

1
dsA

d
dt

(dsA) + 1
dsB

d
dt

(dsB)

}

cos 𝜃 − sin 𝜃�̇� (14.7)

Note that because dxA and dxB are infinitesimal line segments emanating from the same point,
the same value of L is used for each. When 𝜃 = 90◦, the line segments are orthogonal and
(14.7) reduces to

nA⋅D ⋅ nB = −1
2
�̇�

Thus, the off-diagonal components give half the rate of decrease of the angle between linear
segments aligned with the coordinate directions.
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14.3 Meaning of W

Since W is an anti- (or skew-) symmetric tensor, W = − WT , it has only three distinct nonzero
components. These components can be associated with a vector w by means of the following
operation:

W ⋅ a = w × a (14.8)

where a is an arbitrary vector. The vector w is called the dual or polar vector (of a skew-
symmetric tensor). Writing (14.8) in component form and recognizing that this relation must
apply for any vector a yields the component form of W:

Wij = 𝜖imjwm

Multiplying both sides with 𝜖ijp and using the 𝜖–𝛿 identity (4.13) yields

wq = −1
2
𝜖qipWip (14.9)

The polar vector can be related to the velocity field by substituting the component form of
W into (14.9)

wi = −1
2
𝜖ijk

1
2

(
𝜕vj

𝜕xk
−

𝜕vk

𝜕xj

)

= 1
2
𝜖ijk𝜕jvk

or

w = 1
2

(𝛁 × v)

The combination 𝛁 × v is called the vorticity. If w = 0, so is the vorticity, and the velocity
field is said to be irrotational. Because

𝛁 × 𝛁𝜙 = 0

for any scalar field 𝜙, in an irrotational field the velocity vector can be represented as the
gradient of a scalar, i.e., v = 𝛁𝜙.

Now, suppose D = 0:

dv = W ⋅ dx

Using (14.8) gives

dv = w × dx

Hence, the local velocity increment is a rigid spin with angular velocity w.
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Exercises

14.1 Show that 𝜆 = 0 is the only real principal value of an antisymmetric tensor, W = −WT .

14.2 Show that the axial vector of an antisymmetric tensor of the form W = ba − ab is a × b.

14.3 (a) Let p be a unit vector in the principal direction of W corresponding to 𝜆 = 0 and,
hence, satisfying

W ⋅ p = 0

Explain why p is parallel to w and, consequently, w = wp, where w is the axial
vector or polar vector of W defined by (14.8).

(b) Let q and r be unit vectors orthogonal to each other (q ⋅ r = 0) and to p (q ⋅ p = 0,
r ⋅ p = 0) such that p, q, and r form a right-handed system, p ⋅ q × r = 1. Show
that W is given by

W = w(rq − qr)

where w = r ⋅ W ⋅ q. (Problem 4.5.a may be useful here.)

14.4 Consider the motion

x(X, t) = Q(t) ⋅ X + c(t)

(a) Determine expressions for the rate-of-deformation and spin tensors.
(b) If the rate-of-deformation tensor vanishes, the motion is rigid and the lengths of

lines remain the same in the current and reference configurations. In this case
show that Q(t) is an orthogonal tensor, i.e., Q−1(t) = QT (t), and that

W = Q̇(t) ⋅ Q−1(t)

is antisymmetric.
(c) Show that for a rigid motion (see Example 13.1) the Eulerian descriptions of

velocity and acceleration can be written as

v(x, t) = ċ(t) + W ⋅ (x − c)

a(x, t) = c̈(t) + (Ẇ + W ⋅ W) ⋅ (x − c)

(d) Or, in terms of the axial vector of W,

v(x, t) = ċ(t) + w × (x − c)

a(x, t) = c̈(t) + ẇ × (x − c) + w × {w × (x − c)}
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14.5 In rigid motion of a body, the spatial positions of four particles relative to a fixed origin
are given by the vectors c and c + ai, where the ai are orthonormal vectors. Show that
the spin tensor W and the polar vector w are given by

W = 1
2

(ȧpap − apȧp)

w = 1
2

ap × ȧp



15
Geometric Measures
of Deformation

In the preceding chapter we were concerned only with the instantaneous rate of deformation
and spin in the current configuration. Now we want to compare the geometry in the current
configuration to that in the reference configuration.

15.1 Deformation Gradient

Figure 15.1 shows an infinitesimal line segment in the reference configuration, dX, mapped
into an infinitesimal line segment in the current configuration, dx, by

dxk =
𝜕xk

𝜕Xm
dXm

where 𝜕xk∕𝜕Xm are components of the deformation gradient tensor:

Fkm =
𝜕xk

𝜕Xm
(X) (15.1)

Note that in F the gradient is with respect to position in the reference configuration. In
coordinate-free notation

dx = F ⋅ dX = dX ⋅ FT (15.2)

We will show that the tensor F contains all information about the geometry of deformation:
change in length of lines, change in angles, change in area, and change in volume.

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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reference current

e1

e2

e3

X

x

P
p

dX dxQ
q

Figure 15.1 Infinitesimal line segments in the reference and current configurations.

15.2 Change in Length of Lines

The square of the length of an infinitesimal line segment dx in the current configuration is
given by its scalar product with itself:

(ds)2 = dx ⋅ dx = (dX ⋅ FT ) ⋅ (F ⋅ dX) (15.3)

= dX ⋅ (FT ⋅ F) ⋅ dX (15.4)

The length of the line segment in the reference configuration is dS = (dX ⋅ dX)1∕2 and N =
dX∕dS is a unit vector in the direction of the infinitesimal line segment dX in the reference
configuration. Now (15.4) can be written as

( ds
dS

)2
= N ⋅ (FT ⋅ F) ⋅ N

The ratio

ds
dS

= Λ(N) (15.5)

defines the stretch ratio. The tensor

C = FT ⋅ F (15.6)

is called the Green deformation tensor by Malvern (1988) or the right Cauchy–Green tensor
by Truesdell and Noll (1965). Note that C is symmetric. (See Problem 15.1.)

The stretch ratio (15.5) can be expressed as

Λ = ds
dS

=
√

N ⋅ C ⋅ N (15.7)

Because C is symmetric, it possesses three real positive principal values that can be associated
with three orthogonal principal directions. The principal values are squares of the principal
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stretch ratios, ΛI , ΛII , ΛIII , with corresponding principal directions NI , NII , NIII . Because the
stretch ratios must be positive, C is positive definite, i.e.,

x ⋅ C ⋅ x > 0

for any vector x ≠ 0. By the same derivation as in Chapter 10, the principal stretch ratios
include the largest and smallest values of the stretch ratio. Thus, C has the following principal
axes representation in dyadic form:

C = Λ2
I NINI + Λ2

IINIINII + Λ2
IIINIIINIII

Because each line segment in the current configuration must originate from a line segment in
the reference configuration, the tensor F possesses an inverse:

dX = F−1 ⋅ dx = dx ⋅ F−1T

Consequently, it is possible to calculate the reciprocal of the ratio (15.5), 𝜆 = Λ−1, in terms
of F−1:

(dS)2 = dX ⋅ dX = dx ⋅ (F−1T ⋅ F−1) ⋅ dx

or

𝜆2 = n ⋅ (F−1T ⋅ F−1) ⋅ n (15.8)

where n = dx∕ds is a unit vector in the direction of the line segment in the current configuration.
The inverse of the tensor

B = F ⋅ FT

is equal to the product in parentheses on the right side of (15.8). The tensor B is called the left
Cauchy–Green tensor by Truesdell and Noll (1965). Its inverse B−1 (sometimes denoted c) is
called the Cauchy deformation tensor by Malvern (1988). Prager (1973) calls B and B−1 the
Finger tensors.

15.3 Change in Angles

The angle 𝜃 between two line segments dxA and dxB in the current configuration (Figure 15.2)
is given by

cos 𝜃 =
dxA ⋅ dxB
|
|dxA

|
|
|
|dxB

|
|

Using (15.2) and (15.6) yields

cos 𝜃 =
NA ⋅ C ⋅ NB

(NA ⋅ C ⋅ NA)1∕2(NB ⋅ C ⋅ NB)1∕2
(15.9)

Because dXA and dXB are infinitesimal line segments emanating from the same point, the
deformation gradient F is the same for both. The terms in the denominator of (15.9) are the
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dXB

dX A

dxA

dxB

current

θ

Θ

reference

Figure 15.2 Angle Θ between two infinitesimal line segments in the reference configuration changes
to 𝜃 in the current configuration.

stretch ratios in the directions NA and NB, ΛA and ΛB, respectively. We define the shear
as the change in angle between line segments in the directions NA, NB in the reference
configuration:

𝛾(NA, NB) = Θ − 𝜃

where

cosΘ = NA ⋅ NB

Using (15.9) gives

cos(Θ − 𝛾) = NA ⋅ C ⋅ NB

(
ΛAΛB

)−1
(15.10)

In the special case, Θ = 90◦, cos(90◦ − 𝛾) = sin 𝛾 . Note that if NA and NB are principal
directions, 𝛾 = 0 (because NA ⋅ C ⋅ NB = Λ2

BNB ⋅ NA = 0). Therefore principal directions of C
in the reference configuration remain orthogonal in the current configuration.

15.4 Change in Area

An oriented element of area in the reference configuration is given by

N dA = dXA × dXB

= ei𝜖ijk(dXA)j(dXB)k

and is deformed into

n da = dxA × dxB (15.11)

in the current configuration. Substituting (15.2) into the component form of (15.11) yields

ni da = 𝜖ijk

[
Fjr(dXA)r

] [
Fks(dXB)s

]

Multiplying both sides by Fit gives

niFit da =
[
𝜖ijkFitFjrFks

]
(dXA)r(dXB)s
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The term in square brackets can be written in terms of the determinant of F (5.3). The result is

niFit da = 𝜖rst det(F)(dXA)r(dXB)s

Reverting to coordinate-free notation gives

n ⋅ F da = det(F) dXA × dXB

= det(F)N dA

and then multiplying (from the right) by F−1 gives Nanson’s formula relating areas in the
current and reference configurations:

n da = det(F)(N ⋅ F−1) dA (15.12)

15.5 Change in Volume

An element of volume in the reference configuration is given by the triple scalar product of
three line segments dXA, dXB, and dXC

dV = dXA ⋅ (dXB × dXC) = 𝜖ijk(dXA)i(dXB)j(dXC)k

Similarly, an element of volume in the current configuration is

dv = dxA ⋅ (dxB × dxC) = 𝜖rst(dxA)r(dxB)s(dxC)t

Substituting (15.2) and rearranging gives

dv = 𝜖rstFriFsjFtk(dXA)i(dXB)j(dXC)k

Again using (5.3) gives

dv = det(F)𝜖ijk(dXA)i(dXB)j(dXC)k

and reverting to coordinate-free notation gives

dv = det(F)dXA ⋅ (dXB × dXC) (15.13)

Defining J as the ratio of current to reference volume elements gives

J = dv
dV

=
𝜌0

𝜌
= det(F) (15.14)

Because the ratios dv∕dV and 𝜌0∕𝜌 must be strictly positive, det(F) > 0, establishing that F−1

does exist. That det(F) > 0 is identical to the condition (13.5) confirms the earlier assertion
that the motion can be inverted (13.2).
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Because of (15.6) and the result of Example 5.3

det(C) = det FT det F = (det F)2

and (15.13) and (15.14) can be expressed in terms of C. Similarly, changes in the length of
lines and angles are expressed in terms of C (rather than F alone). Hence, it is C that describes
deformation. The expression for the change in area (15.12) involves F because a change in
area can occur by pure rotation without deformation.

15.6 Polar Decomposition

In the discussion of shear and angle change following (15.10), we noted that a triad in the
directions of principal stretch ratios remains orthogonal after deformation. That is, the shear is
zero for two lines in the principal directions of C in the reference configuration. Consequently,
we can imagine the deformation to occur in the two steps shown schematically in Figure 15.3:
First, a pure deformation that stretches line elements in the principal directions to their final
length; then a rotation that orients these line elements in the proper directions in the current
configuration.

The deformation is given by

dx′ = U ⋅ dX (15.15)

Because U is the deformation tensor that stretches line elements in the principal directions, it
has the same principal directions as C and has principal values that are equal to the principal
stretch ratios. Hence, the principal axis representation of U is

U = ΛININI + ΛIINIINII + ΛIIINIIINIII

NII

NIII NI

Pure
deformation:

II IIN

I IN
Λ

Λ

Λ

Λ

Λ

Λ

III IIIN

II IIn

I In

III IIIn

Pure rotation:

Reference Configuration

Current Configuration

Figure 15.3 Illustration of the polar decomposition of deformation into a pure stretching and a pure
rotation.
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where U = UT . Note that although U does not change the right angle between principal
directions, in general the angles between lines that are not oriented in the principal directions
will change.

Then the principal directions in the reference configuration are rotated into their proper
orientation in the current configuration:

dx = R ⋅ dx′ (15.16)

R is an orthogonal tensor corresponding to a pure rotation, so that the lengths of line segments
will be preserved (Chapter 2). Combining (15.15) and (15.16) yields

dx = F ⋅ dX = (R ⋅ U) ⋅ dX

Thus, the deformation gradient tensor is decomposed into the product of a pure deformation
tensor and a rotation tensor:

F = R ⋅ U (15.17)

Substituting (15.17) into the expression for the Green deformation tensor (15.6) gives

C = FT ⋅ F = UT ⋅ U = U2

Formally, we can write U =
√

C, but this operation can be carried out only in principal axis
form. In order to calculate the components of U from C it is necessary to express C in principal
axis form, take the square roots of the principal values, then convert back to the coordinate
system of interest.

Alternatively, we could have rotated first, then stretched. This leads to

dx = V ⋅ R ⋅ dX

where

V = 𝜆−1
I nInI + 𝜆−1

II nIInII + 𝜆−1
III nIIInIII

and

nK = R ⋅ NK

The rotation tensor is given by the dyad

R = nKNK

and U and V are related by

V = R ⋅ U ⋅ RT

Thus, U and V have the same principal values but their principal directions are related by the
rotation tensor R.
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15.7 Example

Show that an infinitesimal sphere in the reference configuration

dX ⋅ dX = 1 (15.18)

deforms into an ellipsoid in the current configuration with semi-axes given by the principal
stretch ratios and with axes aligned with principal directions in the current configuration.

We begin with

dX = F−1 ⋅ dx = (V ⋅ R)−1 ⋅ dx =
(
RT ⋅ V−1) ⋅ dx (15.19)

where we have used R−1 = RT . Similarly,

dX = dx ⋅
(
F−1)T = dx ⋅

(
RT ⋅ V−1)T = dx ⋅

(
V−1T ⋅ R

)
(15.20)

Substituting (15.19) and (15.20) into (15.18) yields

dx ⋅
(
V−1T ⋅ V−1) ⋅ dx = 1 (15.21)

Writing V−1 in principal axis form

V−1 =
∑

K=I,II,III

𝜆KnKnK

and substituting into (15.21) yields

(
𝜆I dx ⋅ nI

)2 +
(
𝜆II dx ⋅ nII

)2 +
(
𝜆III dx ⋅ nIII

)2 = 1

Exercises

15.1 Show that C is symmetric.

15.2 Show that det F = det U.

15.3 The motion of a continuum is given by

x1 = 𝛼 cos(𝜃)X1 + 𝛽 sin(𝜃)X2

x2 = −𝛼 sin(𝜃)X1 + 𝛽 cos(𝜃)X2

x3 = X3

where 𝛼, 𝛽, and 𝜃 are constants.
(a) Determine the deformation tensor F.
(b) Determine the deformation tensor C.
(c) Determine the deformation tensor U.
(d) Determine the rotation tensor R.
(e) Determine the principal directions of V.
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15.4 The definition of the velocity gradient tensor L involved the gradient with respect to the
current coordinates [𝛁x(…)]i = 𝜕(…)∕𝜕xi, whereas the deformation gradient tensor
involves gradients with respect to the reference coordinates [𝛁X(…)]i = 𝜕(…)∕𝜕Xi.
Show that for a position-dependent vector u, these gradients are related by

𝛁Xu = FT ⋅
(
𝛁xu

)

15.5 Show that the magnitudes of the areas in the current and reference configurations are
related by

da
dA

= det (F)
√

N ⋅ C−1 ⋅ N

15.6 Show that the angle Θ between two lines in the reference configuration that are in the
directions nA and nB in the current configuration is given by

cosΘ = 𝜆−1
A 𝜆−1

B nA ⋅ B−1 ⋅ nB

where 𝜆A and 𝜆B are the reciprocals of stretch ratios in directions nA and nB in the
current configuration.

15.7 Show that the ratio (dA∕da)2 is given by

(dA
da

)2
= J−2n ⋅ B ⋅ n

where the area element with magnitude da has the unit normal n.

15.8 Show that the deformation tensor U is symmetric in any rectangular Cartesian coordi-
nate system (and, hence, in any coordinate system).

15.9 Show that

Λn = F ⋅ N

15.10 A simple shear deformation deforms a unit square into a rhombus as shown in Fig-
ure 13.4 and is described by

x1 = X1 + 𝛾X2, x2 = X2, x3 = X3

Determine the deformation gradient tensor F and the Cauchy deformation tensor
C = FT ⋅ F.

15.11 For the simple shear deformation of Problem 15.10 use the formula (15.7) to compute
the stretch ratios of both diagonals and verify your results using geometry.

15.12 For the simple shear deformation of Problem 15.10 with 𝛾 = 1:
(a) Compute the principal values of C.
(b) Compute the principal stretches. [Answer: ΛI = 1.681]
(c) Compute the angle that the principal direction corresponding to the largest prin-

cipal value of C makes with e1. [Answer: 58.3◦]
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15.13 For the simple shear deformation:
(a) Show that the principal stretch ratios (in the reference state) can be expressed as

ΛI = 𝛼 = ΛII
−1 and ΛIII = 1 where

𝛼 =
√

1 + (𝛾∕2)2 + (𝛾∕2)

(b) Show that the corresponding principal directions are given by

NK = RL ⋅ ek

where

RL = cos(Θ)(e1e1 + e2e2) + sin(Θ)(e2e1 − e1e2) + e3e3 (15.22)

and tan(Θ) = 𝛼.
(c) Show that the components of the deformation tensor U are given by

U11 = 𝛼 cos2(Θ) + 𝛼−1 sin2(Θ) = 2𝛼
𝛼2 + 1

U12 = U21 =
(
𝛼 − 𝛼−1) cos(Θ) sin(Θ) = 𝛼2 − 1

𝛼2 + 1

U22 = 𝛼−1 cos2(Θ) + 𝛼 sin2(Θ) = 𝛼3 + 𝛼−1

𝛼2 + 1
U33 = 1

15.14 For the simple shear deformation:
(a) Show that the rotation tensor R is given by

R = cos(𝜔)(e1e1 + e2e2) − sin(𝜔)(e2e1 − e1e2) + e3e3

where tan𝜔 = 𝛾∕2. Thus, the principal directions in the current state are given
by

nK = RE ⋅ ek

where RE has the same form as in (15.22) with Θ replaced by 𝜃 = Θ − 𝜔.
(b) Show that Θ + 𝜃 = 𝜋∕2.

References

Malvern LE 1988 Introduction to the Mechanics of a Continuous Medium. Prentice Hall.
Prager W 1973 Introduction to the Mechanics of Continua. Dover.
Truesdell C and Noll W 1965 The non-linear field theories of mechanics. In Encyclopedia of Physics (ed. Flügge S)
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16
Strain Tensors

16.1 Material Strain Tensors

For an appropriate material strain tensor, we want it to characterize line length, angle, and
volume changes but to be independent of any rigid rotation. For finite strain, there are many
possibilities but it is sensible that they all agree with the small-strain tensor when strains are
indeed small. Thus, a material strain tensor is defined by the following requirements (Hill
1968):

1. Has the same principal axes as U.
2. Vanishes when the principal stretch ratios are unity.
3. Agrees with the small-strain tensor.

The first requirement constrains a material strain tensor to have the following principal axis
form:

E = f (ΛI)NINI + f (ΛII)NIINII + f (ΛIII)NIIINIII (16.1)

where the NK are the principal directions of U, the ΛK are the principal stretch ratios (the
square root of the principal values of C), and f (Λ) is a smooth and monotonic, but otherwise
arbitrary, function. By construction, a material strain tensor is symmetric, E = ET . The second
requirement restricts the value of f (1) = 0 so that E = 0 when U = I. The last requires f ′(1) = 1
so that E agrees with the small-strain tensor. To demonstrate this, we expand f (Λ) aboutΛ = 1:

f (Λ) = f (1) + f ′(1)(Λ − 1) + 1
2

f ′′(1)(Λ − 1)2 +…

Using f (1) = 0, f ′(1) = 1, and retaining only the linear term yields

f (Λ) = Λ − 1

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
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Thus, the principal values of E reduce to change in length per unit (reference) length for
principal stretch ratios near unity.

The most common choice for the scale function f (Λ) is

f (Λ) = 1
2

(Λ2 − 1) (16.2)

Substituting (16.2) into (16.1) and combining terms defines the Green (Lagrangian) strain
tensor

EG = 1
2

(UT ⋅ U − I)

This is a convenient choice because U2 = UT ⋅ U can be calculated directly from the deforma-
tion tensor F:

EG = 1
2

(FT ⋅F − I) (16.3)

Determining U (or any odd power of U) requires first finding the principal values and directions
of C. For arbitrary stretch ratios, the normal components of the Green–Lagrange strain do not
give change in length per unit reference length but, as indicated by (16.2), the current length
squared minus the reference length squared divided by two times the reference length squared.

The component form of (16.3) is

EG
ij = 1

2

(
FT

ikFkj − 𝛿ij

)
= 1

2
(FkiFkj − 𝛿ij) (16.4)

or using (15.1), Fkl = 𝜕xk∕𝜕Xl, gives

EG
ij = 1

2

{
𝜕xk

𝜕Xi

𝜕xk

𝜕Xj
− 𝛿ij

}

(16.5)

EG
ij can be expressed in terms of the displacement components uk by noting that xk = Xk + uk:

EG
ij = 1

2

{
𝜕ui

𝜕Xj
+

𝜕uj

𝜕Xi
+

𝜕uk

𝜕Xj

𝜕uk

𝜕Xi

}

(16.6)

Although the choice of (16.2) is the most common one for the scale function, there are many
other possibilities. Perhaps the most obvious extension of small strain is to choose

f (Λ) = Λ − 1 =
change in length
reference length

Using (16.1) to convert to tensor form yields

E(1)= U − I (16.7)
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This is a finite strain measure that was introduced and used by Biot (1965), but has the
drawback that it cannot be expressed directly in terms of F. Another possibility corresponds
to defining normal strains as change in length per unit current length:

E(−1) = I − U−1

Still another possibility is logarithmic strain, corresponding to the scale function f (Λ) =
lnΛ. This is often used as the large-strain measure for uniaxial bar tests. This one-dimensional
measure can be extended to a tensor version in a manner similar to other finite strains:

E(ln) = lnU

Thus E(ln) has the same principal directions as U but principal values that are the logarithms
of the principal stretch ratios. The operation implied by the right side of only makes sense in
principal axes form; for axes that are not aligned with the principal directions, the components
of E(ln) are not the logarithms of the components of U.

A form of the scale function that includes all of these strain measures as special cases is
(Ogden 1997)

f (Λ) = 1
m

(Λm − 1) (16.8)

If m is even, the strain can be written directly in terms of the deformation gradient. The
Green–Lagrange strain (16.3) corresponds to m = 2, and (16.7) to m = 1. The limit m → 0
yields the logarithmic strain measure.

16.2 Spatial Strain Measures

We can define a class of spatial strain measures in a manner analogous to the material strain
measures. The spatial strain measures have the same principal axes as V

e = g(𝜆I)nInI + g(𝜆II)nIInII + g(𝜆III)nIIInIII (16.9)

and the same requirements on the scale functions: g(1) = 0 and g′(1) = 1. In (16.9) we use
𝜆 = Λ−1 = dS∕ds to emphasize that we are working in the current configuration.

The most commonly used spatial strain measure is the Almansi strain corresponding to the
scale function

g(𝜆) = 1
2

(1 − 𝜆2)

Converting to tensor form yields

eA = 1
2

{
I − F(−1)T ⋅F−1} (16.10)
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Expressing this in terms of Cartesian components gives

eA
ij =

1
2

{
𝛿ij − F−1

ki F−1
kj

}
(16.11)

The components of eA can be expressed in terms of the displacement components by noting
that

Xm = xm − um (16.12)

where now the displacements are regarded as functions of spatial position x (Eulerian descrip-
tion) rather than position in the reference configuration X. Hence, the components of F−1 are
F−1

mn = 𝜕Xm∕𝜕xn or, in terms of the displacements,

F−1
mn = 𝛿mn −

𝜕um

𝜕xn
(16.13)

Substituting into (16.11) yields

eA
ij =

1
2

{
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi
−

𝜕uk

𝜕xi

𝜕uk

𝜕xj

}

(16.14)

By comparison to the component expression for the Green–Lagrange strain (16.6), the sign
of the last term is changed and the derivatives are with respect to position in the current
configuration. Neglecting the last nonlinear terms reduces (16.14) to the expression for the
small-strain tensor in which the distinction between the current and reference positions is
neglected.

16.3 Relations Between D and Rates of EG and U

16.3.1 Relation Between Ė and D

Because D expresses the rate of deformation, we expect that there is a relation between D and
the rate of strain, in particular the rate of the Green–Lagrange strain.

Differentiating the relation (15.2) yields an expression for dv:

dv = Ḟ ⋅ dX

Using (15.2) and comparing to (14.2) yields

Ḟ = L ⋅ F (16.15)

Differentiating the expression for the Green–Lagrange strain (16.3) gives

ĖG = 1
2

{
ḞT ⋅ F + FT ⋅ Ḟ

}
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Substituting (16.15) and rearranging gives

ĖG = FT ⋅ D ⋅ F (16.16)

Thus, ĖG = 0 when D = 0. This is a property of any material strain tensor (its rate vanishes
when D = 0) and, hence, reinforces the interpretation of a material strain measure.

Rates of the spatial strain measures do not vanish when D vanishes. For example, consider
the rate of the Almansi strain (16.10)

ėA = −1
2

{ d
dt

(
F−1T) ⋅F−1 + F−1T ⋅

d
dt

(
F−1)

}

(16.17)

In order to calculate the rate of F−1, we begin with

F−1 ⋅F = I

Differentiating and then solving for d(F−1)∕dt gives

d
dt

(
F−1) = −F−1 ⋅ Ḟ ⋅ F−1

This illustrates the general procedure for determining the derivative of the inverse of a tensor.
Using (16.15) gives

d
dt

(
F−1) = −F−1 ⋅L

Substituting into (16.17) and rearranging gives

ėA = D − LT ⋅ eA − eA ⋅ L

When D = 0, ėA does not vanish but is

ėA = −WT ⋅ eA − eA ⋅ W

Consequently, ėA depends on the spin tensor and, in general, would not be suitable for use in a
constitutive relation because the material behavior is affected by rigid rotation. This motivates
the definition of a special rate that does vanish when D = 0:

êA = ėA + WT ⋅ eA + eA ⋅ W

16.3.2 Relation Between D and U̇

We can also examine the relation between D and U̇. Rewriting (16.15), substituting (15.17),
and rearranging yields

L = Ṙ ⋅ RT + R ⋅ U̇ ⋅ U−1 ⋅ RT (16.18)



126 Fundamentals of Continuum Mechanics

The first term Ṙ ⋅ RT is antisymmetric. Substituting (16.18) into (14.4) yields

D = 1
2

R ⋅
{

U̇ ⋅ U−1 + U−1T ⋅ U̇T} ⋅ RT

Similarly, substituting into (14.5) yields

W = Ṙ ⋅ RT + 1
2

R ⋅
{

U̇ ⋅ U−1 − U−1T ⋅ U̇T} ⋅ RT

Although U is symmetric, in general the product U̇ ⋅ U−1 is not and, thus, the spin depends on
the antisymmetric part of U̇ ⋅ U−1.

Exercises

16.1 Carry out the details leading from (16.11) to (16.14).

16.2 Carry out the details leading to (16.18).

16.3 Investigate the material strain measure E(−2) corresponding to choice of the scale
function f (Λ) = 1

2
(1 − Λ−2).

(a) Show that

E(−2) = 1
2

{
I − C−1}

(b) Show that the Cartesian components of E(−2) are given by

E(−2)
ij = 1

2

(
𝜕ui

𝜕xj
+

𝜕uj

𝜕xi
−

𝜕ui

𝜕xk

𝜕uj

𝜕xk

)

and compare to the Cartesian component form of eA.
(c) Show that E(−2) is related to the Almansi strain measure eA by

eA = R ⋅ E(−2) ⋅ RT

16.4 Consider the spatial strain measure based on the scale function g(𝜆) = 1
2
(𝜆−2 − 1).

(a) Show that

e(−2) = 1
2

{B − I}

(b) Show that the Cartesian form of e(−2) is

e(−2)
ij = 1

2

{
𝜕ui

𝜕Xj
+

𝜕uj

𝜕Xi
+

𝜕ui

𝜕Xk

𝜕uj

𝜕Xk

}
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(c) Show that e(−2) is related to the Green–Lagrange strain measure EG by

e(−2) = R ⋅ EG ⋅ RT

16.5 By expanding ln Λ about Λ = 1 show that the logarithmic strain E(ln) can be expressed
as the following series:

E(ln) = (U − I) − 1
2

(U − I)2 + 1
3

(U − I)3 +…

16.6 Show that the principal values of the Green–Lagrange strain measure EG
K are related

to those of the Almansi strain eA
K by

eA
K =

EG
K

1 + 2EG
K

16.7 Beginning with R ⋅ RT = I, show that Ṙ ⋅ RT is antisymmetric.

16.8 Show that when the principal axes of U are fixed (do not rotate), D has the interpretation
of the logarithmic strain rate in the current configuration.

16.9 Show that

J̇ = J tr L = J tr D

beginning with

J = det(F) = 𝜖ijkFi1Fj2Fk3

[Hint: Write J̇ = Fp1Fq2Fr3hpqr. Then show that hpqr changes sign with the interchange
of two indices, vanishes when two indices are equal, and that h123 = tr L.]

16.10 Begin with Nanson’s formula (15.12) and show that

d
dt

(da) = {tr L − n ⋅ L ⋅ n} da

16.11 (a) Show that

Λ̇∕Λ = ninjDij

(b) Show that

Λ̈∕Λ = ninjQij + ṅkṅk



128 Fundamentals of Continuum Mechanics

where Qij is the spatial gradient of the acceleration:

Qij =
1
2

{
𝜕ai

𝜕xj
+

𝜕aj

𝜕xi

}
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17
Linearized Displacement Gradients

We now want to show that the deformation and large-strain measures reduce to the usual
expressions for small strain when displacement gradients are infinitesimal. This is a useful
exercise even though the result is expected because the large-strain measures have been
constructed to have this property. The displacement is the difference between the positions in
current and reference configurations u = x − X or, in component form, uk = xk − Xk.

The deformation gradient tensor (15.1) is then

Fij =
𝜕xi

𝜕Xj
= 𝛿ij +

𝜕ui

𝜕Xj
(17.1)

or, in symbolic, coordinate-free form

F = I + (𝛁Xu)T (17.2)

where (𝛁Xu)T is the displacement gradient tensor and the subscript X emphasizes that the
gradient is with respect to position in the reference configuration. We have shown that all
the geometric measures of deformation, changes in the length of lines, changes in angles,
and changes in volume can be expressed in terms of the Green deformation tensor C (15.6).
Expressing C in terms of the displacement gradient yields

C = I + (𝛁Xu)T + (𝛁Xu) + (𝛁Xu) ⋅ (𝛁Xu)T (17.3)

or, in component form,

Cij = 𝛿ij +
(
𝜕ui

𝜕Xj
+

𝜕uj

𝜕Xi

)

+
𝜕uk

𝜕Xi

𝜕uk

𝜕Xj
(17.4)

We assume that the magnitude of the displacement gradient is much less than unity

|
|
|
|
|

𝜕ui

𝜕Xj

|
|
|
|
|

≪ 1 (17.5)
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and define the infinitesimal (small) strain tensor as

𝜀ij =
1
2

(
𝜕ui

𝜕Xj
+

𝜕uj

𝜕Xi

)

= 𝜀ji (17.6)

or

𝜀 = 1
2

(

∇Xu +
(
∇Xu

)T
)

(17.7)

Because of the assumption (17.5), the last terms in (17.3) and (17.4) can be neglected. Thus,

C ≈ I + 2𝜺 (17.8)

or

Cij ≈ 𝛿ij + 2𝜀ij (17.9)

Now we use these to linearize the geometric measures of deformation and express them in
terms of the infinitesimal strain tensor.

17.1 Linearized Geometric Measures

17.1.1 Stretch in Direction N

The stretch ratio in direction N is given by (15.7). Substituting (17.8) yields

Λ ≈ {N ⋅ (I + 2𝜀) ⋅ N}1∕2 =
√

1 + 2N ⋅ 𝜀 ⋅ N

Retaining only the linear term in the expansion

(1 + x)n = 1 + nx +… (17.10)

gives

Λ ≈ 1 + N ⋅ 𝜺 ⋅ N (17.11)

Therefore, to first order, the normal components of the infinitesimal strain tensor give the
change in length of a line in the N direction in the reference configuration divided by its length
in the reference configuration:

N ⋅ 𝜺 ⋅ N = Λ − 1

For example, if N = e1, then 𝜀11 is the change in length of a line segment originally in the X1
direction divided by its original length.
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17.1.2 Angle Change

The current angle between lines that were in directions NA and NB in the reference configuration
is given by (15.9). Writing the current angle 𝜃 in terms of the angle in the reference configuration
Θ and the change 𝛾 = Θ − 𝜃 gives

cos {Θ − 𝛾} =
NA ⋅ C ⋅ NB

ΛAΛB
(17.12)

When NA and NB are orthogonal, i.e., NA⋅ NB = 0, (17.12) reduces to

sin 𝛾 =
NA ⋅ C ⋅ NB

ΛAΛB
(17.13)

where 𝛾 is the shear. Approximating sin 𝛾 by 𝛾 , substituting (17.8) and (17.11) into (17.13),
and linearizing yields

𝛾 ≈ 2NA ⋅ 𝜺 ⋅ NB (17.14)

For example, if NA = e1 and NB = e2, 𝛾 = 2𝜀12. Therefore, 𝜀12 is one-half the change in angle
between lines originally in the X1 and X2 directions.

17.1.3 Volume Change

The ratio of volume elements in the current and reference configurations is given by (15.14)

dv
dV

= det(F)

Substituting (17.1) and expanding the determinant yields

dv
dV

= 𝜖ijk

(

𝛿i1 +
𝜕ui

𝜕X1

)(

𝛿j2 +
𝜕uj

𝜕X2

)(

𝛿k3 +
𝜕uk

𝜕X3

)

Carrying out the multiplication but keeping only the linear terms in the displacement gradient
components gives

dv
dV

≈ 1 +
𝜕u1

𝜕X1
+

𝜕u2

𝜕X2
+

𝜕u3

𝜕X3
= 1 + 𝜀11 + 𝜀22 + 𝜀33

Thus, the change in volume divided by reference volume is the trace of the small-strain tensor.
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17.2 Linearized Polar Decomposition

The polar decomposition is given by (15.17), F = R ⋅ U, where F is given by (17.1) or (17.2).

To determine the linearized form of U =
√

C, we begin by expressing the approximation of
C, (17.8) or (17.9), in principal axis form

C ≈ (1 + 2𝜀I)NINI + (1 + 2𝜀II)NIINII + (1 + 2𝜀III)NIIINIII (17.15)

and obtaining

U =
√

C ≈
√

1 + 2𝜀ININI +… (17.16)

Linearizing using (17.10) then yields

U = (1 + 𝜀I)NINI +… (17.17)

Reverting to coordinate-free form yields

U ≈ I + 𝜺 (17.18)

or, in terms of Cartesian components,

Uij ≈ 𝛿ij + 𝜀ij (17.19)

The linearized form of the rotation tensor is determined from

R = F ⋅ U−1 (17.20)

By means of the same procedure as in (17.15) to (17.19), the linearized form of U−1 is

U−1 ≈ I − 𝜺 (17.21)

Substituting (17.21) and (17.2) into (17.20) and neglecting second-order terms gives

R ≈ (I + (𝛁Xu)T ) ⋅ (I − 𝜺)

≈ I + 1
2

(
(𝛁Xu)T − (𝛁Xu)

)

The final term is the infinitesimal rotation tensor

𝛀 = 1
2

[
(𝛁Xu)T − 𝛁Xu

]
(17.22)

or in component form

Ωij =
1
2

(
𝜕ui

𝜕Xj
−

𝜕uj

𝜕Xi

)

(17.23)
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Thus, the multiplicative decomposition (15.17) reduces to the additive decomposition of the
displacement gradient tensor into the symmetric infinitesimal strain tensor and the skew-
symmetric infinitesimal rotation tensor

(𝛁Xu)T = 𝜺 +𝛀 (17.24)

17.3 Small-Strain Compatibility

If the displacements uk(Xj, t) are known and differentiable, then it is always possible to compute
the six strain components

𝜀ij =
1
2

(
𝜕ui

𝜕Xj
+

𝜕uj

𝜕Xi

)

Because there are six strain components calculated from three displacements, some relations
must exist between the strain components. That is, the small-strain components must be
compatible. A mathematically analogous, but simpler situation occurs when force components
Pi are calculated from a scalar potential 𝜙:

P = 𝛁𝜙 (17.25)

where the gradient is with respect to displacement components ui. In general, the force
components are independent, but if they satisfy (17.25) then they must also satisfy

𝛁 × P = 0 (17.26)

This requires, for example, that

𝜕P1

𝜕u2
=

𝜕P2

𝜕u1

This condition is obtained from the X3 component of (17.26) or by substituting the force
components from (17.25) and noting that the derivatives of 𝜙 with respect to X1 and X2 may
be taken in either order.

The equations of small-strain compatibility can be obtained in similar fashion by differen-
tiating the strain components, writing them in terms of displacements, and interchanging the
order of differentiation. An example is the following:

2𝜀12,12 = u1,212 + u2,112

= u1,122 + u2,211

= 𝜀11,22 + 𝜀22,11
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where, for brevity, derivatives are denoted by 𝜕ui∕𝜕Xj = ui,j etc. Similar manipulations yield
five additional conditions:

𝜀22,33 + 𝜀33,22 − 2𝜀23,23 = 0
𝜀33,11 + 𝜀11,33 − 2𝜀31,31 = 0

−𝜀11,23 +
(
−𝜀23,1 + 𝜀31,2 + 𝜀12,3

)

,1 = 0
−𝜀22,13 +

(
𝜀23,1 − 𝜀31,2 + 𝜀12,3

)

,2 = 0
−𝜀33,12 +

(
𝜀23,1 + 𝜀31,2 − 𝜀12,3

)

,3 = 0

All six can be summarized concisely as

𝛁X × (𝛁X × 𝜺)T = 0 (17.27)

or

𝜖jrs𝜖ipq𝜀sq,rp = 0 (17.28)

Malvern (1988, p. 187) explains that of these six only three are independent. Nevertheless, it is
generally more convenient to use all six but recognize that they provide only three independent
conditions.

Thus, if the strains are written in terms of displacements, the conditions (17.27) or (17.28)
are necessary for the strains to be compatible. On the other hand, if the strains are known, what
conditions are sufficient to guarantee that the strain components can be integrated to yield a
single-valued displacement field? To visualize the meaning of this, imagine cutting the body
into small (infinitesimal) blocks. Assign a strain to each block. Generally the body will not
fit back together. There will be gaps, overlaps, etc. That is, the displacement field will not
be single valued unless the strains assigned to the blocks are compatible. It turns out that the
conditions (17.28) are also sufficient (at least in simply connected bodies; if the body is not
simply connected additional conditions are needed).

Again the situation is mathematically analogous to a simpler one. Consider the increment
of work dW due to the action of the force P on the displacement increment du

dW = P ⋅ du

In general, dW is not a perfect differential. That is, work is a path-dependent quantity and the
line integral

W =
∫C

P ⋅ du (17.29)

will have different values if calculated on different paths between the same two points. It
follows that the integral around a closed path will not be zero. Work will, however, be
path independent if it is equal to the change in energy, or if, in other words, the system is
conservative. A condition guaranteeing that this is the case is the same as (17.26)

𝛁 × P = 0 (17.30)
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If this condition is met, the force can be represented as the gradient of a scalar potential
function (17.25). Hence, (17.30) is necessary and sufficient for the force to be the gradient of
a scalar function and the work to be equal to a change in energy.

The situation is similar but the details are more complicated for strain compatibility because
the strain is a tensor. Consider the conditions for which the displacement gradient field can be
integrated to give a single-valued displacement field

uP − uO =
∫C

du =
∫C

(𝛁Xu)T ⋅ dX (17.31)

where uP is the displacement at point P, uO is the displacement at O, and C is any path joining
P and O. Using (17.24) and expressing in index notation, (17.31) becomes

uP
i − uO

i =
∫C

(𝜀ij + Ωij)dXj

Expressing the second term on the right in terms of the infinitesimal rotation vectorΩij = 𝜖jikwk
yields

uP
i − uO

i =
∫C

(𝜀ij + 𝜖jikwk)dXj (17.32)

Analogous to (17.29) and (17.30), a sufficient condition guaranteeing that the integral (17.32)
is independent of path is that the curl of the integrand must vanish. This operation yields

𝜖ipq𝜀qs,p + wi,s − 𝛿iswp,p = 0 (17.33)

but the second term on the right side vanishes because the divergence of the rotation vector is
zero. Operating on both sides with 𝜖jrs𝜕r yields (17.28).

Exercises

17.1 Fill in the details of linearizing (17.13) to get (17.14).

17.2 Fill in the details of obtaining (17.21).

17.3 Derive the linearized form of Nanson’s formula (15.12) relating area elements in the
current and reference configurations.

17.4 Show that the divergence of the rotation vector vanishes.

17.5 Show that applying the curl to the integrand of (17.32) and setting equal to zero results
in (17.33).
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Part Four
Balance of Mass,
Momentum, and
Energy

In this part we develop forms for the conservation of mass, momentum, and energy appropriate
for application to a continuum. The starting point is application of these laws to a group of
materials or element of mass that involves integration over volume elements. Consequently,
preparatory to derivation of the balance laws, we need to discuss manipulation of the types of
integrals that occur.
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Transformation of Integrals

To derive equations expressing the conservation of mass and energy and balance of angular and
linear momentum, we will repeatedly use the divergence theorem or Green–Gauss theorem.
The theorem relates the integral of the divergence over a volume to an integral over the
bounding surface with outward normal n. For a vector u the theorem is

∫V
𝛁 ⋅ u dV =

∫S
n ⋅ u dS (18.1)

where V is the volume, S is the bounding surface, and n is the unit outward normal on S. The
following related theorems for a scalar function 𝜙 and a tensor function F have the same form:

∫V
𝛁𝜙 dV =

∫S
n𝜙 dS

∫V
𝛁 ⋅ F dV =

∫S
n ⋅ F dS (18.2)

Aris (1989) and Kellogg (1954), or other books on potential theory have extensive discus-
sions of this theorem. Here, for simplicity, we will consider a planar version:

∫ ∫A

(
𝜕ux

𝜕x
+

𝜕uy

𝜕y

)

dx dy =
∫C

(nxux + nyuy) ds (18.3)

As shown in Figure 18.1, the curve C, composed of segments C1 and C2, encloses the area
A and is traversed in a counterclockwise direction. Figure 18.2 shows the components of the
outward normal and an element ds of the curve C. Although it is usually written in different
form, this is Green’s theorem in the plane.

To prove this theorem note that the double integral of the second term on the left of (18.3)
can be carried out by first integrating in y for a vertical strip of width dx (Figure 18.1). The
limits of integration are given by the curves y1(x) and y2(x) that make up C1 and C2. Then the
integration in x is carried out by sweeping this strip from left to right. Because 𝜕uy∕𝜕y is a
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BA

D

E

d

e

a b

C2: y = y2(x)

C1: y = y1(x)

dx

x

y

Figure 18.1 Definitions for derivation of Green’s theorem in the plane.

perfect differential, the integration in y is simply

∫ ∫A

𝜕uy

𝜕y
dx dy =

∫

b

a
dx

∫

y2(x)

y1(x)

𝜕uy

𝜕y
(x, y) dy

=
∫

b

a
[uy(x, y2(x)) − uy(x, y1(x))] dx

= −
∫

a

b
uy(x, y2(x)) dx −

∫

b

a
uy(x, y1(x)) dx

= −
∫C

uy dx

The third line follows by inserting a minus sign and interchanging the limits of integration in
the first term. The last line follows by noting that the sum of integrating over the curves y1(x)
and y2(x) in the same direction is an integral around the closed curve C. Writing

dx = dx
ds

ds = − sin 𝛼 ds

n

ds ny

nx-dx
dy

x

y

Figure 18.2 Expressing Green’s theorem in the plane in terms of the normal and tangent vectors to the
curve.
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x1

x3

dx3

dx2

x2

n+

dS+

n–
dS–

Figure 18.3 Schematic of integration over a columnar element in the x1 direction.

and noting that ny = sin 𝛼 gives the second term on the right side of (18.3). Integration of the
first term follows in the same way but by first using a horizontal strip of height dy.

Proofs of the three-dimensional version (18.1) are similar but use integration along columnar
elements as illustrated in Figure 18.3. Integration in the x1 direction becomes

∫V

𝜕

𝜕x1
(…) dx1 dx2 dx3 =

∫S+
(…)+ dx2 dx3 −

∫S−
(…)− dx2 dx3

where the right side is the contribution from the ends of the column. Noting that

dx2 dx3 = n+1 ds+ = −n−1 ds−

and adding the contributions from all the columns gives

∫V

𝜕

𝜕x1
(…) dx1 dx2 dx3 =

∫S
n1 (…) ds

Treating the partial derivatives with respect to x2 and x3 in the same way and adding the results
establishes the theorem.

The curve in Figure 18.1 is a special one because vertical and horizontal lines intersect
the curve in no more than two points. Nevertheless the theorem applies for more complicated
curves such as those shown in Figure 18.4 and the method of proof used above is easily
modified for these cases. For the curve on the left a vertical line can intersect the curve in four
points. This difficulty is easily overcome, however, by inserting the dotted line as shown and
applying the method to each part of the area separately. The dotted line is traversed in opposite
directions for each part and, thus, as long as the integrand is continuous, the contributions
cancel.

On the right in Figure 18.4, the area of integration A has a hole so that there is an interior
and exterior boundary. Again, demonstration of the theorem proceeds in the same way after
connecting the interior and exterior boundaries by the dotted line. If the integrand is continuous,
the portions of the integral over the dotted line cancel since they are traversed in opposite
directions. Note that the resulting contour C is counterclockwise on the exterior boundary and



142 Fundamentals of Continuum Mechanics

n

n

n

C

A

C

A

Figure 18.4 Curves for which vertical or horizontal lines intersect the boundaries in more than two
points.

clockwise on the interior boundary. On both boundaries the normal n points out of the area A.
In other words, a person walking on the contour in the direction shown would have the area A
to their left and the normal n to their right.

A similar argument can be applied to integration over columns illustrated in Figure 18.3.

Exercises

18.1 Carry out integration of the first term on the left side in (18.3) to obtain the first term
on the right side.

18.2 Express the surface integral over a closed surface S as a volume integral over the
enclosed volume V if the integrand of the surface integral is:
(a) n ⋅ 𝝈 ⋅ v
(b) 𝜖rmsxm𝜎jsnj

L–

L+
n V

S

Figure 18.5 Volume V with a bounding surface S. L is a surface of discontinuity with normal n and
positive and negative sides as shown.
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18.3 Modify the divergence theorem applied to the stress tensor 𝜎

∫V
𝛁 ⋅ 𝝈 dV =

∫S
n ⋅ 𝝈 dS

for the case in which the traction t = n ⋅ 𝝈 is discontinuous across an internal surface L
contained in V as shown in Figure 18.5. (Be sure to define all terms that enter.)
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19
Conservation of Mass

In this chapter, we derive equations expressing the conservation of mass for a continuum.
The methods we develop here will be used in succeeding chapters to derive equations for the
balance of momentum and conservation of energy.

The total mass in a reference volume V is

m =
∫V

𝜌o(X) dV

In the current configuration, this same mass occupies the volume v:

m =
∫V

𝜌o(X) dV =
∫v(t)

𝜌(x, t)dv (19.1)

Because mass can be neither created nor destroyed the rate of change of mass must vanish:
dm∕dt = 0. Differentiating (19.1) yields

d
dt ∫v(t)

𝜌(x, t) dv = 0 (19.2)

Because the current volume v occupied by a fixed amount of mass changes with time, the
integration volume in (19.2) depends on time. In Section 19.2 we discuss how to compute
directly the derivative of an integral over a time-dependent volume. First, however, we intro-
duce another approach by converting the integral to one over the reference volume. Since the
current and reference volume elements are related by dv = J dV where J = det(F), we can
rewrite (19.2) as an integral over the reference volume

d
dt ∫V

𝜌 [x(X, t), t] J dV = 0
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The integration variable is now position in the reference configuration X rather than position
in the current configuration x, and J is the Jacobian of the change of variable. Because the
reference volume is independent of time, we can take the derivative inside the integral

∫V

{

J
d
dt
𝜌 + 𝜌J̇

}

dV = 0 (19.3)

Problem 16.9 outlines how to compute the derivative of the Jacobian J. The result is

J̇ = JtrD = JtrL = J𝛁 ⋅ v (19.4)

Substituting into (19.3) yields

∫V

{ d
dt
𝜌 + 𝜌𝛁 ⋅ v

}

J dV = 0

Now the integration can be changed back to the current volume

∫v(t)

{
d𝜌
dt

+ 𝜌𝛁 ⋅ v
}

dv = 0

Using the expression for the material derivative of the density, (13.12) or (13.11), we rewrite
the integrand as

∫v(t)

{
𝜕𝜌

𝜕t
+ 𝛁 ⋅ (𝜌v)

}

dv = 0 (19.5)

Using the divergence theorem on the second term gives

∫v(t)

𝜕𝜌

𝜕t
dv +

∫a(t)
n ⋅ v 𝜌 da = 0 (19.6)

Because 𝜕∕𝜕t is the time derivative with the spatial position fixed, it can be taken outside the
integral. Thus, the first term is the rate of change of mass instantaneously inside the spatial
volume v(t).

The second term in (19.6) is the rate of change of mass in v due to flow across the surface of
v, i.e., a (Figure 19.1). Since n is the outward normal, the integral is positive for flow outward.
During a time increment Δt the mass passing through da sweeps out a cylindrical volume

dv = n ⋅ vΔt da (19.7)

where v is the material velocity. Therefore the mass outflow is 𝜌v ⋅ nΔt da. If we had begun the
derivation by considering a control volume fixed in space, then the result would had the same
form as (19.6). Although the concepts of following a fixed amount of mass or considering the
change of mass in a control volume are different, the results must be the same.
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v

n

da

da

n

v

n.vΔt
vΔt

Figure 19.1 Illustration of the flux across a surface element da.

Because (19.5) applies for all volumes v containing a fixed amount of mass, the integrand
vanishes and

𝜕𝜌

𝜕t
+ 𝛁 ⋅ (𝜌v) = 0 (19.8)

is the local form of mass conservation in the current configuration. This equation can be written
in several alternative forms. Expanding the second term gives

𝜕𝜌

𝜕t
+ v ⋅ 𝛁𝜌 + 𝜌𝛁 ⋅ v = 0

Using the material derivative gives

d𝜌
dt

+ 𝜌𝛁 ⋅ v = 0 (19.9)

Rearranging gives

1
𝜌

d𝜌
dt

= −𝛁 ⋅ v (19.10)

The left side of (19.10) is the fractional rate of volume decrease. The right side gives an
interpretation of the divergence as the flux out of a volume. Using (19.4) we can rewrite
(19.10) as

d
dt

(𝜌J) = 0 (19.11)

Integrating yields

𝜌J = constant = 𝜌o

This is a local expression of (19.1).
For an incompressible material d𝜌∕dt = 0, not 𝜕𝜌∕𝜕t = 0. (Note that to say a material is

incompressible does not mean that it is rigid (non-deformable). The material can deform
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but in such a way that the volume remains constant.) It follows that for an incompressible
material

𝛁 ⋅ v = 0 (19.12)

In this case the velocity vector v can be expressed as the curl of a vector 𝚿:

v = 𝛁 ×𝚿

A velocity of this form automatically satisfies (19.12).

19.1 Reynolds’ Transport Theorem

In examining the other balance laws, we will encounter the derivative of integrals of the
following form over a volume in the current configuration containing a fixed amount of mass

I = d
dt ∫v(t)

𝜌 (x, t) (x, t) dv (19.13)

where (x, t) is a vector or scalar quantity that is proportional to the mass, e.g., kinetic energy
per unit mass, momentum per unit mass. As in the preceding section, the complications of
differentiating an integral over a time-dependent volume are circumvented by converting to
integration over the reference volume

I = d
dt ∫V

𝜌 (x[X, t], t) (x[X, t], t) J dV (19.14)

Now, the derivative can be taken inside the integral

I =
∫V

{

J𝜌 (x[X, t], t)
d
dt
 (x[X, t], t)

}

dV (19.15)

where the other terms vanish because of mass conservation in the form (19.11). Converting
the integral back to the current volume gives

I =
∫v(t)

𝜌(x, t)
d
dt
(x, t) dv (19.16)

Equating (19.13) and (19.16) yields

d
dt ∫v(t)

𝜌(x, t)(x, t) dv =
∫v(t)

𝜌(x, t)
d
dt
(x, t) dv
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Hence, if the integral is over a volume that encloses a fixed amount of mass, the material
derivative can be taken inside the integral to operate only on (x, t). This is Reynolds’
transport theorem.

19.2 Derivative of an Integral over a Time-Dependent Region

An alternative approach to dealing with integrals in (19.2) that are over a time-dependent
volume is to fall back on the fundamental definition of a derivative. Because the volume of
integration encloses a fixed set of material particles, the volume changes with time. We must
take this into account in computing the derivative. Let v(t) be the time-dependent volume and
n ⋅ v be the normal speed of points on the boundary of v. We want to compute

d
dt ∫v(t)

Q(x, t) dv = lim
Δt→0

1
Δt

{

∫v(t+Δt)
Q(x, t + Δt) dv −

∫v(t)
Q(x, t) dv

}

(19.17)

where Q(x, t) is the spatial description of some quantity defined everywhere in v(t). We can
write the volume at t + Δt as

v(t + Δt) = v(t) + [v(t + Δt) − v(t)]

Therefore, (19.17) becomes

d
dt ∫v(t)

Q(x, t) dv = lim
Δt→0

{
1
Δt ∫v(t)

{Q(x, t + Δt) − Q(x, t)} dv

}

+ lim
Δt→0

{
1
Δt ∫v(t+Δt)−v(t)

Q(x, t + Δt) dv

}

Because the first integral does not depend on Δt, the limit can be taken inside the integral to
yield

∫v(t)
lim
Δt→0

{
Q(x, t + Δt) − Q(x, t)

Δt

}

dv

Using the definition of the partial derivative then gives

∫v(t)

𝜕Q
𝜕t

(x, t) dv

To evaluate the second term, consider the motion of a portion of the boundary (Figure 19.1).
Equation (19.7) is the volume swept out in time Δt. Therefore

d
dt ∫v(t)

Q(x, t) dv =
∫v(t)

𝜕Q
𝜕t

(x, t) dv +
∫a(t)

Q(x, t)n ⋅ v da
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The last term can be transformed using the divergence theorem applied to a control volume
instantaneously coinciding with the volume occupied by the material. Thus, the final result is

d
dt ∫v(t)

Q(x, t) dv =
∫v(t)

{
𝜕Q
𝜕t

(x, t) + 𝛁 ⋅ [Q(x, t)v]

}

dv (19.18)

If Q(x, t) = 𝜌(x, t) is the density, the left side of (19.18) vanishes because of mass conserva-
tion. Hence, the right-hand side must also vanish and, since the equation must apply for any
volume v, (19.8) is recovered.

If Q(x, t) = 1, (19.18) becomes

d
dt ∫v(t)

dv =
∫v(t)

𝛁 ⋅ v dv =
∫a(t)

n ⋅ v da (19.19)

reinforcing the interpretation of the divergence as a measure of the flux out of a volume.

19.3 Example: Mass Conservation for a Mixture

Mixture theory assumes that each material point can be simultaneously occupied by more than
one constituent. Consider a mixture of two phases, a solid with density 𝜌s and a fluid with
density 𝜌f . If there are no chemical reactions between the solid and fluid phases then separate
mass conservation equations for each species take the form

𝜕𝜌s

𝜕t
+ ∇ ⋅ (𝜌svs) = 0 (19.20)

𝜕𝜌f

𝜕t
+ ∇ ⋅ (𝜌f vf ) = 0 (19.21)

where vs is the velocity of the solid and vf is the velocity of the fluid. If there are chemical
reactions converting the solid to fluid phase and vice versa, each equation will have a term of
equal magnitude and opposite sign.

If the solid has a structure or framework, it is more convenient to combine these equations
into a single one expressing mass conservation for the fluid in terms of flow relative to the
solid phase. To this end we rewrite (19.20) as

d
dt
𝜌s + 𝜌s𝛁 ⋅ vs = 0 (19.22)

where

d
dt

(…) = 𝜕

𝜕t
(…) + vs ⋅ 𝛁(…)
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is the material derivative following the motion of the solid. The second equation can be
rewritten as

𝜕

𝜕t
𝜌f + vs ⋅ 𝛁𝜌f + (vf − vs) ⋅ 𝛁𝜌f + 𝜌f𝛁 ⋅ vf = 0

where d(…)∕dt is again the material derivative following the motion of the solid. Adding and
subtracting 𝜌f∇ ⋅ (vf − vs) gives

d
dt
𝜌f + 𝛁 ⋅ [𝜌f (vf − vs)] − 𝜌f𝛁 ⋅ (vf − vs) + 𝜌f𝛁 ⋅ vf = 0

Cancelling the term 𝜌f𝛁 ⋅ vf leaves

d
dt
𝜌f + 𝛁 ⋅ [𝜌f (vf − vs)] + 𝜌f𝛁 ⋅ vs = 0

Using (19.22) to replace ∇ ⋅ vs yields

𝜕m
𝜕t

+ 𝛁 ⋅ q = 0

where

q = 𝜌f (vf − vs)

is the flux of fluid mass relative to the solid and

𝜕m
𝜕t

= 𝜌f

[
1
𝜌f

d𝜌f

dt
− 1

𝜌s

d𝜌s

dt

]

is the change of fluid mass relative to the change of solid volume.

Exercises

19.1 Fill in the details of obtaining (19.15) from (19.14).

19.2 Evaluate (19.19) for a spherical volume with time-dependent radius R(t).
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Conservation of Momentum

20.1 Momentum Balance in the Current State

20.1.1 Linear Momentum

The conservation of linear momentum expresses the application of Newton’s second law:

∑
F = d

dt
(mv) (20.1)

To apply this to a continuum, we enforce the condition that the momentum be balanced for
a set of particles with a fixed mass. An alternative approach, as indicated in the preceding
chapter for the conservation of mass, is to focus on a control volume fixed in space but to
account for the flux of momentum in and out of the volume. (See Problem 20.3.) Let t be the
surface force per unit current area, that is, the traction. Let b be the body force per unit mass.
Application of (20.1) to a volume v(t) enclosed by a surface a(t) gives

∫a(t)
t da +

∫v(t)
𝜌b dv = d

dt ∫v(t)
𝜌v dv (20.2)

Writing the traction in terms of the stress as n ⋅ 𝝈 and using the divergence theorem on the
first term yields

∫a(t)
n ⋅ 𝝈 da =

∫v(t)
𝛁 ⋅ 𝝈 dv (20.3)

Alternatively, conservation of linear momentum can be used to define the stress as that tensor
necessary to convert the surface integral in (20.2) into a volume integral. Reynolds’ transport
theorem gives the following result for the right hand side of (20.2):

∫v(t)
𝜌

dv
dt

dv
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Collecting terms gives

∫v(t)

{

𝛁 ⋅ 𝝈 + 𝜌b − 𝜌
dv
dt

}

dv = 0

Since this integral must vanish for any material volume, the integrand must vanish:

𝛁 ⋅ 𝝈 + 𝜌b = 𝜌
dv
dt

or, in component form,

𝜕𝜎ij

𝜕xi
+ 𝜌bj = 𝜌

dvj

dt
(20.4)

This is the equation of motion. If the right hand side is negligible, then (20.4) reduces to the
equilibrium equation

𝜕𝜎ij

𝜕xi
+ 𝜌bj = 0

expressing that the sum of the forces is zero.

20.1.2 Angular Momentum

Similarly, balance of angular momentum results from the statement that the sum of the moments
M is equal to the time derivative of the angular momentum L

∑
M = d

dt
L

Applying this to a collection of material particles occupying the current volume v(t) enclosed
by the surface a(t) yields

∫a(t)
(x × t) da +

∫v(t)
(x × 𝜌b) dv = d

dt ∫v(t)
(x × 𝜌v) dv

or in component form

∫a(t)
𝜖ijkxjtk da +

∫v(t)
𝜖ijkxj𝜌bk dv = d

dt ∫v(t)
𝜌𝜖ijkxjvk dv (20.5)
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As before, the traction can be expressed in terms of the stress as tk = nl𝜎lk. Using the divergence
theorem to rewrite the surface integral as a volume integral and distributing the multiplication
yields

∫a(t)
𝜖ijkxjtk da =

∫v(t)
𝜖ijk

[

𝛿jl𝜎lk + xj
𝜕𝜎lk

𝜕xl

]

dv (20.6)

Reynolds’ transport theorem can be used to write the right side of (20.5) as

d
dt ∫v(t)

𝜌𝜖ijkxjvk dv =
∫v(t)

𝜌𝜖ijk
d
dt

(xjvk)dv (20.7)

where

d
dt

(xjvk) = vjvk + xj
dvk

dt
(20.8)

Using the results of (20.6) to (20.8) in (20.5) yields

∫v(t)
𝜖ijk𝜎jk dv +

∫v(t)
𝜖ijkxj

{
𝜕𝜎lk

𝜕xl
+ 𝜌bk − 𝜌

dvk

dt

}

dv −
∫v(t)

𝜌𝜖ijkvjvk dv = 0

The last term vanishes because 𝜖ijk is skew-symmetric in jk and vjvk is symmetric, and the
term {…} vanishes because of the equation of motion (20.4). Because the remaining integral
must vanish for all material volumes v, the integrand must be zero

𝜖ijk𝜎jk = 0

Multiplying by 𝜖ipq, summing, and using the 𝜖–𝛿 identity (4.13) gives

𝜎pq = 𝜎qp (20.9)

or

𝝈 = 𝝈T (20.10)

This is a more systematic demonstration of the symmetry of the stress tensor than given in
Section 9.4.

20.2 Momentum Balance in the Reference State

In the preceding section, we expressed the balances of linear and angular momenta in terms
of integrals over the body in the current configuration. The stress tensor that entered is the
Cauchy stress 𝝈 discussed in Chapter 9. Often, however, it is more convenient to use the
reference configuration. Referring the balance of momentum to the reference state introduces
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a different stress tensor. This stress tensor is not symmetric but nevertheless is consistent with
(20.9) and (20.10).

20.2.1 Linear Momentum

Let t0 be the surface force per unit reference area, b0 be the body force per unit mass, and 𝜌0
be the mass density in the reference state. Then application of (20.1) to a volume V enclosed
by a surface A gives

∫A
t0 dA +

∫V
𝜌0b0 dV = 𝜕

𝜕t ∫V
𝜌0v dV (20.11)

Note that t0 and 𝜌0b0 express the current surface and body force although they are computed
in terms of the reference area and volume. Also, the partial derivative, rather than the material
derivative, is used on the right side because the reference volume is not changing in time.
All the quantities in this equation should be considered functions of position in the reference
configuration X. The nominal traction can be written in terms of a stress as

t0 = N ⋅ T0 (20.12)

where N is the unit normal to area A in the reference configuration and T0 is the nominal
stress (this stress or its transpose is often called the first Piola–Kirchhoff stress) rather than the
Cauchy stress 𝝈. Application of the divergence theorem (20.3) in the reference configuration
to the first term yields

∫A
N ⋅ T0 dA =

∫V
𝛁X⋅T

0 dV

where the subscript X emphasizes that the derivatives in the divergence are with respect
to position in the reference configuration. Substituting into (20.11) and bringing the partial
derivative inside the integral gives

∫V

{

𝛁X⋅T
0 + 𝜌0b0 − 𝜌0

𝜕v
𝜕t

}

dV = 0

Since this integral must vanish for any material volume, the integrand must vanish:

𝛁X⋅T
0 + 𝜌0b0 = 𝜌0

𝜕v
𝜕t

(20.13)

or, in component form,

𝜕T0
ij

𝜕Xi
+ 𝜌0b0

j = 𝜌0

𝜕vj

𝜕t
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The connection between the Cauchy stress 𝝈 and the nominal stress T0 can be established
by noting that both must give the same increment of current force dP

dP = n ⋅ 𝝈 da = N ⋅ T0 dA

Using Nanson’s formula (15.12) relating the current and reference area elements and rear-
ranging yields the following relation between the nominal and Cauchy stress tensors:

T0 = det(F)F−1 ⋅ 𝝈 (20.14)

20.2.2 Angular Momentum

The balance of angular momentum can also be expressed in terms of the reference area and
volume:

∫A
x × t0 dA +

∫V
x × 𝜌0b0 dV = 𝜕

𝜕t ∫V
x × 𝜌0v dV

or in component form

∫A
𝜖ijkxjt

0
k dA +

∫V
𝜖ijkxj𝜌0b0

k dV = 𝜕

𝜕t ∫V
𝜌0𝜖ijkxjvk dV (20.15)

Note that x, not X, appears in these expressions because the current moment and angular
momentum are the cross product of the current location with the current force and linear
momentum even though these are expressed in terms of integrals over the reference area and
volume. As before, the traction can be expressed in terms of the stress as in (20.12), and using
the divergence theorem to rewrite the surface integral as a volume integral gives

∫A
𝜖ijkxjt

0
k dA =

∫V
𝜖ijk

𝜕

𝜕Xl

{
xjT

0
lk

}
dV

In contrast to the derivation in terms of the current configuration, distributing the derivative in
the first term becomes

𝜕xj

𝜕Xl
= Fjl

rather than 𝛿jl. Because the integral on the right side of (20.15) is over the reference volume,
the derivative can be taken inside without recourse to Reynolds’ transport theorem. When the
balance of linear momentum (20.13) is used, the only term remaining is

∫V
𝜖ijkFjlT

0
lk dV = 0
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Because the integral must vanish for all volumes V , the integrand must be zero

𝜖ijkFjlT
0
lk = 0

which requires that

F ⋅ T0 =
(
F ⋅ T0)T

(20.16)

Because the deformation gradient F is not, in general, symmetric, the nominal stress will
not be symmetric. But since the nominal and Cauchy stress are related by (20.10), equation
(20.16) is equivalent to the requirement that the Cauchy stress be symmetric.

20.3 Momentum Balance for a Mixture

For a mixture of 𝛼 constituents, the balance of linear momentum for each constituent is given
by

𝜌𝛼

(
𝜕v𝛼
𝜕t

+ v𝛼 ⋅ 𝛁v𝛼

)

= 𝛁 ⋅ 𝝈𝛼 + m𝛼 + 𝜌𝛼b𝛼

where v𝛼 is the velocity of the 𝛼 constituent, 𝝈𝛼 and b𝛼 are the stress and body force on the
𝛼 constituent, m𝛼 is a momentum exchange term, and 𝜌𝛼 is the mass of 𝛼 per volume of the
mixture, equal to 𝜙𝛼𝛾𝛼 , where 𝜙𝛼 is the volume fraction of 𝛼 and 𝛾𝛼 is the mass density of 𝛼.
Summing over all constituents yields

∑

𝛼

𝜌𝛼
𝜕v𝛼
𝜕t

+
∑

𝛼

𝜌𝛼v𝛼 ⋅ 𝛁v𝛼 =
∑

𝛼

𝛁 ⋅ 𝝈𝛼 + 𝜌b (20.17)

where 𝜌b =
∑

𝛼 𝜌𝛼b𝛼 and
∑

𝛼 m𝛼 = 0 since the total momentum exchange for all constituents
is zero. The first term on the left can be written as

∑

𝛼

𝜌𝛼
𝜕v𝛼
𝜕t

=
∑

𝛼

𝜕(𝜌𝛼v𝛼)

𝜕t
−
∑

𝛼

v𝛼
𝜕𝜌𝛼

𝜕t

Using mass conservation for the 𝛼 constituent

𝜕𝜌𝛼

𝜕t
+ 𝛁 ⋅ (𝜌𝛼v𝛼) = 0

to rewrite the second term and substituting back into (20.17) yields

𝜕 (𝜌v)
𝜕t

+
∑

𝛼

{
v𝛼 ⋅ 𝛁𝜌𝛼v𝛼 + 𝜌𝛼v𝛼 ⋅ 𝛁v𝛼

}
=
∑

𝛼

𝛁 ⋅ 𝝈𝛼 + 𝜌b
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where 𝜌v =
∑

𝛼 𝜌𝛼v𝛼 . Expanding the first term and using conservation of mass for the summed
constituents and the material derivative of v gives

𝜌
d
dt

v = 𝛁 ⋅
∑

𝛼

(𝝈𝛼 + [𝜌vv−𝜌𝛼v𝛼v𝛼]) + 𝜌b

Note that if the total stress is defined as the term in parentheses on the right side, there is
a contribution from the differences of the momentum of the constituents from the average
momentum.

Exercises

20.1 The stress tensor is given by

𝝈 = Tnn

where n is a unit vector and T > 0. If T = T(x), the body is in equilibrium, and is not
subject to body forces, show that the gradient of T is perpendicular to n.

20.2 The stress state in a body occupying |x1| ≤ a, |x2| ≤ a is given by

𝜎11 = −p

(
x2

1 − x2
2

)

a2

𝜎22 = p

(
x2

1 − x2
2

)

a2

𝜎12 = 2px1x2∕a2

and 𝜎33 = 𝜎13 = 𝜎23 = 0. If the body is not subjected to body forces, determine whether
it is in equilibrium.

20.3 Show that the right side of (20.4) can be written as

𝜌
dvj

dt
= 𝜕

𝜕t

(
𝜌vj

)
+ 𝜕

𝜕xi

(
𝜌vivj

)

and use this result to derive the equation for the balance of linear momentum for a
control volume fixed in space.





21
Conservation of Energy

The equation expressing conservation of energy for a continuum results from application of
the first law of thermodynamics. The first law states that the change in total energy of a system
is equal to the sum of the work done on the system and the heat added to the system. Thus, in
rate form the first law is

Ėtotal = P + Q̇ (21.1)

where P is the power input and Q̇ is the rate of heat input. Although neither heat nor work is
an exact differential (does not integrate to a potential function), their sum is. Consequently,
the integral of the energy change around a cycle is zero. The total energy is the sum of the
kinetic energy

KE =
∫v(t)

1
2
𝜌v ⋅ v dv

where v is the velocity, and the internal energy

IE =
∫v(t)

𝜌u dv

where u is the internal energy per unit mass. The rate of heat input is

Q̇ = −
∫a(t)

q ⋅ n da +
∫v(t)

𝜌r dv

where q is the heat flux, n is the outward normal to the surface a(t), and r is the rate of internal
heating (heat source) per unit mass.

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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The power input is the work of the forces on the velocities

P =
∫a(t)

t ⋅ v da +
∫v(t)

𝜌b ⋅ v dv

where t is the traction and b is the body force per unit mass. Expressing the traction in terms
of the stress and using the divergence theorem (18.2) yields the following for the first term:

∫a(t)
t ⋅ v da =

∫a(t)
n ⋅ 𝝈 ⋅ v da =

∫v(t)
𝛁 ⋅ (𝝈 ⋅ v) dv (21.2)

To work out 𝛁 ⋅ (𝝈 ⋅ v) it is convenient to use index notation (see Problem 21.1). After
converting back to coordinate-free form, the result is

𝛁 ⋅ (𝝈 ⋅ v) = (𝛁 ⋅ 𝝈) ⋅ v + 𝝈 ⋅ ⋅L (21.3)

where L is the velocity gradient tensor (14.3). Using the equation of motion (20.4) to rewrite
the first term on the right in (21.3) and substituting back into (21.2) yields

P =
∫v(t)

𝜌
1
2

d
dt

(v ⋅ v) dv +
∫v(t)

𝝈 ⋅ ⋅L dv (21.4)

Using Reynolds’ transport theorem on the first term gives

∫v(t)

1
2
𝜌

d
dt

(v ⋅ v) dv = d
dt ∫v(t)

1
2
𝜌v ⋅ v dv (21.5)

Substituting (21.5) into (21.4) and then (21.4) and (21.3) back into (21.1) and cancelling the
common term, d(KE)∕dt, on each side yields

d
dt ∫v(t)

𝜌u dv =
∫v(t)

𝝈 ⋅ ⋅L dv −
∫a(t)

q ⋅ n da +
∫v(t)

𝜌r dv

The divergence theorem (18.1) can be used to convert the heat flux term to a volume integral.
Using Reynolds’ transport theorem on the internal energy term and collecting terms gives

∫v(t)

{

𝜌
du
dt

− 𝝈 ⋅ ⋅L + ∇ ⋅ q − 𝜌r
}

dv = 0

Since this applies for all v the local form of energy conservation is

𝜌
du
dt

= 𝝈 ⋅ ⋅L − ∇ ⋅ q + 𝜌r (21.6)

This equation has the simple interpretation that the internal energy of a continuum can be
changed by the work of deformation, 𝝈 ⋅ ⋅L, the flow of heat, −∇ ⋅ q, or internal heating, 𝜌r.
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Similarly to the momentum balance equations, the energy equation can be expressed in
terms of quantities per unit area and volume of the reference configuration. Manipulations
similar to those above lead to

𝜌0
𝜕u
𝜕t

= T0 ⋅ ⋅Ḟ − 𝛁X ⋅ Q + 𝜌0R (21.7)

where Q is the heat flux per unit reference area

Q = JF−1 ⋅ q

𝜌0 R is the rate of internal heating per unit reference volume and 𝛁X(…) denotes the gradient
with respect to position in the reference configuration.

21.1 Work-Conjugate Stresses

The first term on the right side of (21.7) is the rate of stress working per unit reference volume:

Ẇ0 = T0 ⋅ ⋅Ḟ (21.8)

Since the first term on the right side of (21.6) is the rate of stress working per unit current
volume, it is related to (21.8) by

Ẇ0 = J𝝈 ⋅ ⋅L = J𝝈 ⋅ ⋅D (21.9)

where J = det(F) and the second equality makes use of the symmetry of 𝝈. The relation
between the Cauchy stress 𝝈 and the nominal stress T0 (20.12) can be obtained by equating
the two expressions (21.8) and (21.9)

T0 ⋅ ⋅Ḟ = J𝝈 ⋅ ⋅L

Substituting Ḟ = L ⋅ F in the left side gives

T0 ⋅ ⋅ (L ⋅ F) = J𝝈 ⋅ ⋅L (21.10)

The identity of Problem 3.9 can be used to rearrange (21.10) as

(
F ⋅ T0 − J𝝈

)
⋅ ⋅L = 0

Since this must apply for any velocity gradient tensor L, the coefficient must vanish and,
therefore, the nominal stress is given by the same relation derived from Nanson’s formula
(21.10) for the current and reference areas:

T0 = JF−1 ⋅ 𝝈
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In both (21.8) and (21.9) Ẇ0 is the product of a stress tensor and a deformation rate measure.
The stress measure is said to be work conjugate to the rate of deformation measure. Note that
the stress measure work conjugate to L or D is not the Cauchy stress but the Kirchhoff stress,
which is the product

𝜏 = J𝝈

This distinction, although small if volume changes are small, can be important in numerical
formulations. Even though 𝝈 and D are both symmetric, the stiffness matrix in a finite element
formulation is not guaranteed to be symmetric only if based on a relation in terms of D and 𝝈.

More generally, the relation for the rate of stress working per unit reference volume can be
used to define symmetric stress tensors S that are work conjugate to the rate of any material
strain tensor Ė. (Since the rate of a material strain tensor is symmetric, there is no point in
retaining any antisymmetric part to the conjugate stress tensor since it does not contribute
to Ẇ0.) Thus, writing

Ẇ0 = S ⋅ ⋅Ė (21.11)

and equating to (21.8) or (21.9) defines S for a particular rate of material strain Ė. For example,
we can determine the stress measure that is work conjugate to the rate of Green–Lagrange
strain ĖG

Ẇ0 = J𝝈 ⋅ ⋅D = SPK2 ⋅ ⋅ĖG

Using the relation between the rate of Green–Lagrange strain and the rate of deformation
(16.16) yields

(
J𝝈 − F ⋅ SPK2 ⋅ FT) ⋅ ⋅D = 0

Since this must apply for any D, the work-conjugate stress is given by

SPK2 = F−1 ⋅ J𝝈 ⋅ (FT )−1 (21.12)

and it is clearly symmetric. This stress measure is called the second Piola–Kirchhoff stress.
The second Piola–Kirchhoff stress has the advantages that it is symmetric and that it is work

conjugate to the rate of the Green-Lagrange strain, the most commonly used finite strain tensor.
It does, however, have the disadvantage that its interpretation in terms of a force increment
is less straightforward than either the Cauchy stress 𝝈 or the nominal stress T0. The force
increment is related to the traction vector determined from SPK2 by

N dA ⋅ SPK2 = F−1 ⋅ dP

Thus, the traction derived from SPK2 is related to the force per reference area but altered
by F−1. The components of this traction do have a direct interpretation in terms of force
components expressed in terms of base vectors that convect (deform with the material).
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Exercises

21.1 Use index notation to verify (21.3).

21.2 If the stress is given by 𝝈 = −pI show that the energy equation can be written as

𝜌
du
dt

= p
d𝜌
dt

− 𝛁 ⋅ q + 𝜌r

21.3 If a material is rigid, the internal energy is a function only of temperature 𝜃, and the
heat flux is given by Fourier’s law

q = −𝜅𝛁𝜃

with 𝜅 constant, show that the energy equation reduces to the usual form of the heat
equation

𝜕𝜃

𝜕t
= 𝛼∇2𝜃 + r∕c

where 𝛼 = 𝜅∕𝜌c is a diffusivity, c = 𝜕u∕𝜕𝜃 is a specific heat, and 𝛁 ⋅ 𝛁 (…) = ∇2 (…).

21.4 Beginning with a statement of energy balance in terms of integrals over the refer-
ence configuration, derive (21.7). Clearly define the terms entering this equation and
comment on their relation to the corresponding terms in (21.6).

21.5 Show that the stress work conjugate to the material strain tensor E(−2) is

S(−2) = FT ⋅ J𝝈 ⋅ F

21.6 Show that the stress work conjugate to the rate of the stretch measure of strain E(1) =
U − I is

S(1) = 1
2

J{U−1 ⋅ (RT ⋅ 𝝈 ⋅ R) + (RT ⋅ 𝝈 ⋅ R) ⋅ U−1T }





Part Five
Ideal Constitutive
Relations
Thus far, we have analyzed stress, strain, rate of deformation, and the laws expressing con-
servation of mass, momentum, and energy. Nowhere have we incorporated the behavior of
particular materials. This is a large and complex subject. Inevitably, descriptions of material
behavior are idealized relationships between stress and strain or rate of deformation and their
history. Ultimately, such relationships derive from experiments, but they generally apply only
for a limited range of states, i.e., temperature, loading rate, time-scale, etc. Increases in compu-
tational power have made it possible to consider material behaviors that are far more complex
than in the past. Consequently, the topic of constitutive relations is an enormous one. Here we
give a minimal discussion of the simplest idealizations.

Crudely, materials can be divided into solids (which sustain shear stress at rest) and fluids
(which cannot), but many materials combine aspects of both. Chapter 22 discusses simple
fluid idealizations and Chapter 23 discusses elastic idealizations of solids.
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22
Fluids

22.1 Ideal Frictionless Fluid

Observations indicate that a fluid at rest or in uniform motion cannot support shear stress.
Consequently, the stress is given by

𝜎ij = −p𝛿ij (22.1)

where p is a pressure. If the fluid is at rest or if local thermodynamic equilibrium is assumed,
then p is the thermodynamic pressure (Aris, 1989, Sec. 5.14). If the stress is assumed to have
this form regardless of the motion, the fluid is ideal or perfect. Since p is an unknown, another
equation is needed to determine it. This can be an equation of state of the form

F(p, 𝜌, 𝜃) = 0 (22.2)

where 𝜌 is the mass density and 𝜃 is the temperature. A simple example is the perfect gas law

p = 𝜌R𝜃

where R is the universal gas constant.
If temperature does not play a role, the flow is barotropic and the pressure is related to the

density by an equation of the form

f (p, 𝜌) = 0

An equation of state (22.2) reduces to this form for either constant temperature (isothermal)
or no heat flow (isentropic). For example, for isentropic flow of a perfect gas

p

𝜌𝛾
= constant

In this equation

𝛾 =
cp

cv
= 1 + R

cv
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where cp and cv are the specific heat at constant pressure and constant volume, respectively.
For dry air, 𝛾 = 1.4.

Alternatively, the internal energy per unit mass can be prescribed as a function of the density
and the temperature:

u = u(𝜃, 𝜌)

Recall that conservation of energy is expressed by (21.6)

𝜌
du
dt

= 𝝈 ⋅ ⋅D − 𝛁 ⋅ q + 𝜌r

where r is the rate of internal heating per unit mass, q is the flux of heat (out of the body), and
D replaces L in (21.6) because 𝝈 is symmetric. Substituting (22.1) and using conservation of
mass (19.9) gives

𝜌
du
dt

= p
1
𝜌

d𝜌
dt

− 𝛁 ⋅ q + 𝜌r (22.3)

If u is regarded as a function of v = 1∕𝜌, the specific volume (rather than the density), and the
temperature 𝜃, then the material derivative of u on the left side of (22.3) can be written as

du
dt

= 𝜕u
𝜕v

dv
dt

+ cv
d𝜃
dt

(22.4)

where cv = 𝜕u∕𝜕𝜃 is the specific heat at constant volume. Substituting (22.4) into (22.3) and
rearranging gives

𝜌cv
d𝜃
dt

= −1
v

dv
dt

(

p + 𝜕u
𝜕v

)

+ 𝜌r − 𝛁 ⋅ q (22.5)

This equation must hold for all motions of the fluid including those for which the temperature
is constant. At constant temperature, all terms, except the first on the right, vanish and (22.5)
requires that

p = −𝜕u
𝜕v

This equation provides a constitutive relation for the pressure in terms of the dependence of the
energy on the specific volume. According to the terminology used in Chapter 21, the pressure
and specific volume are work-conjugate variables.

If the material is incompressible so that d𝜌∕dt = 0, then the mechanical response uncouples
from the thermal response governed by

𝜌cv
d𝜃
dt

= 𝜌r − 𝛁 ⋅ q (22.6)

The rate of heating per unit mass r is regarded as prescribed but a constitutive equation is
needed to relate the heat flux q to the temperature. (Considerations based on the second law
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of thermodynamics, not discussed here, indicate that these are the proper variables to relate.)
Typically, this relation is taken to be Fourier’s law, which states that the heat flux is proportional
to the negative gradient of temperature

q = −𝜿 ⋅ 𝛁𝜃 (22.7)

or in component form

qi = −𝜅ij𝜕𝜃∕𝜕xj

The thermal conductivity tensor 𝜿 depends on the material. Second law of thermodynamics
considerations, again not discussed here, require that 𝜿 be symmetric, 𝜿 = 𝜿T . If 𝜿 does not
depend on position, then the material is homogeneous (with respect to heat conduction). If the
material has no directional properties and heat conduction is the same in all directions, then
the material is isotropic. In this case, 𝜿 is an isotropic tensor of the form

𝜿 = kI

(see Section 6.4). Substituting into (22.7) and then (22.6) gives

𝜌cv
d𝜃
dt

= 𝜌r + k∇2𝜃 (22.8)

If the material is rigid or if the velocity is small enough so that d𝜃∕dt ≈ 𝜕𝜃∕𝜕t, then (22.8)
reduces to the usual form of the heat equation

𝜕𝜃

𝜕t
= r∕cv + 𝛼∇2𝜃 (22.9)

where 𝛼 = k∕𝜌cv is the thermal diffusivity (with dimensions of length squared per time).

22.2 Linearly Viscous Fluid

In a simple idealization of a fluid, the stress is taken to be the sum of a hydrostatic term and a
function of the rate of deformation:

𝜎 = −pI + f(D)

where the function f vanishes when D = 0. Such a fluid is called Stokesian (see Aris 1989,
Secs. 5.21 and 5.22, pp. 106–109).

If the stress depends linearly on the rate of deformation,

𝜎ij = −p𝛿ij + VijklDkl (22.10)

the fluid is Newtonian. In this case the factors Vijkl may depend on temperature but not on stress
or deformation rate. Because 𝜎ij = 𝜎ji and Dkl = Dlk, there are six distinct components of 𝜎ij
and Dij, and a total of 36 = 6 × 6 possible distinct components of Vijkl. If the Vijkl are assumed
to have the additional symmetry Vijkl = Vklij, the number of possible distinct components is
reduced to 21.
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If the material response is completely independent of the orientation of axes, the material
is isotropic. In this case, V is an isotropic tensor and, as discussed in Chapter 6, has the form
(6.16) with c = 0 because the coefficient term is antisymmetric with respect to the interchange
of (i) and (j). Substituting into (22.10) yields

𝜎ij = −p𝛿ij + 𝜆𝛿ijDkk + 2𝜇Dij (22.11)

where 𝜆 and 𝜇 are the only two parameters reflecting material response. Taking the trace of
(22.11) yields

1
3
𝜎kk = −p + ΘDkk

where Θ = 𝜆 + 2𝜇∕3 is the bulk viscosity. Taking the deviatoric part of (22.11) yields

𝜎′ij = 2𝜇D′
ij

where 𝜇 is the shear viscosity. Substituting (22.11) into the equation of motion (20.4) gives

(𝜇 + 𝜆)
𝜕

𝜕xj

(
𝜕vk

𝜕xk

)

+ 𝜇∇2vj −
𝜕p

𝜕xj
+ 𝜌bj = 𝜌

dvj

dt
(22.12)

or, in coordinate-free form,

(𝜇 + 𝜆)𝛁𝛁 ⋅ v + 𝜇∇2v − 𝛁p + 𝜌b = 𝜌
dv
dt

These are the Navier–Stokes equations. If the flow is isochoric (involves no volume change),
𝜕vk∕𝜕xk = 0, and (22.12) reduces to

𝜇∇2vj −
𝜕p

𝜕xj
+ 𝜌bj = 𝜌

dvj

dt

The shear viscosity 𝜇 can be determined by a simple conceptual experiment. Consider a
layer of fluid of height h between two parallel plates with lateral dimensions much greater than
h and no body force or pressure gradient (Figure 22.1). (The geometry discussed here is clearly
impractical. In reality the experiment is conducted with an arrangement of concentric rotating
cylinders. See Problem 22.2.) The upper plate (x2 = h) is moved to the right (positive x1
direction) with velocity V . Consequently, the conditions on the fluid velocity at the boundaries
are v1(x2 = h) = V and v1(x2 = 0) = 0.

After a transient that occurs immediately after the plate begins moving, the velocity in the
fluid does not depend on time, i.e., the flow is steady. Integration and use of the boundary
conditions give v1 = x2V∕h. The only nonzero component of Dij is

D12 = D21 = 1
2

(
𝜕v1

𝜕x2
+

𝜕v2

𝜕x1

)

= V
2h

= 1
2
�̇�
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h

V
12 = /

v(x2)

x2

x1

Figure 22.1 Flow between infinite plates. Lower plate x2 = 0 is stationary. Upper plate x2 = h is moving
to the right with velocity V .

and the shear stress 𝜎12 is the force applied to the plate divided by its contact area with the fluid.
If a plot of 𝜎12 against �̇� is linear, then the fluid is Newtonian and viscosity is 𝜇. Commonly
the viscosity is measured in poise, which is equal to 1 dyne-s/cm2. In poise, representative
viscosities for water, air, and SAE 30 oil are 10−2, 1.8 × 10−4, and 0.67 respectively.

22.2.1 Non-steady Flow

As an example of non-steady flow, consider a plate large in the x1 and x3 directions that bounds
a semi-infinite expanse of fluid (x2 = y ≥ 0). At time t = 0, the plate moves in the positive
x1 direction with velocity V . The only nonzero component of velocity is v1 = v(y, t). For a
velocity of this form and no body force and pressure gradient, (22.2) reduces to

𝜕2v
𝜕y2

= 1
𝜂

𝜕v
𝜕t

(22.13)

where 𝜂 = 𝜇∕𝜌 is the dynamic viscosity. In m2/s, 𝜂 equals approximately 10−6, 1.5 × 10−5,
and 7.3 × 10−5 for water, air and SAE 30 oil respectively. At y = 0 and t ≥ 0, v = V . The fluid
velocity must vanish as y → ∞. (Note that (22.13) is identical in form to the heat equation
(22.9) without the source term and, hence, the solution described below is also a solution to
the corresponding thermal problem.)

To construct a solution, note that there is no characteristic length in the problem. Conse-
quently, the velocity can depend on y only in the non-dimensional form 𝜉 = y∕

√
4𝜂t, where

the factor of 4 is inserted purely for convenience. Because the problem is linear, the velocity
must also be proportional to V and, hence, have the form

v(y, t) = Vf (𝜉) (22.14)

where f (𝜉) is a function to be determined. Substituting (22.14) into (22.13) yields

f ′′(𝜉) + 2𝜉f ′(𝜉) = 0
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and integrating gives

f (𝜉) = A
∫

𝜉

0
exp(−s2) ds + B (22.15)

where A and B are constants. Using the condition at y = 0 gives B = 1. For y → ∞, 𝜉 → ∞
and (22.15) gives

A
∫

∞

0
exp(−s2) ds + B = 0

The value of the integral is
√
𝜋∕2 and A = −2∕

√
𝜋. The velocity is given by

v(y, t) = Verfc
(
y∕
√

4𝜂t
)

where

erfc(x) = 2
√
𝜋 ∫

∞

x
exp(−s2) ds

is the complementary error function and the error function erf(x) = 1 − erfc(x). Figure 22.2
plots both the complementary error function and the error function.

Because erfc(2) = 0.005, the fluid velocity is reduced to 0.5% of the plate velocity. At 10 s,
this occurs at 13, 29, and 108 mm from the plate for air, water, and SAE 30 oil, indicating
that the effect of viscosity is confined to the neighborhood of the plate. This observation is the
foundation of boundary layer theory in which the viscosity is included only near a boundary
and the velocity there is matched to the flow of an inviscid fluid away from the boundary.

Figure 22.2 Error function and complementary error function.
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Exercises

22.1 Consider Poiseuille flow between two large (essentially unbounded) plates separated by
a distance 2h (Figure 22.3). The plates are stationary, the flow is steady (𝜕(…)∕𝜕t = 0),
and there are no body forces. Velocity is only in the x1 direction and depends only
on x2; that is, v1 = v(x2) is the only non-zero velocity component. The flow occurs in
response to a constant pressure gradient in the x1 direction, dp∕dx1.
(a) Determine the velocity profile.
(b) Determine the shear stress 𝜎12 at x2 = h.

h

h

x2

x1

Figure 22.3 Plane Poiseuille flow between two parallel plates.

22.2 As mentioned, a practical arrangement for determining the shear viscosity 𝜇 is flow
between concentric cylinders, as depicted in Figure 22.4. The outer cylinder of radius
b is stationary and the inner cylinder of radius a is rotating with angular velocity
Ω. The cylinders are long in the out-of-plane direction and the flow is steady (the
cylinder has been rotating for a long time so that 𝜕(…)∕𝜕t = 0). Flow is only in the
circumferential direction and depends only on radial distance, i.e., v = v(r)e𝜃 . There are
no body forces or pressure gradient. [Hint: The problem can be solved using the answers
to Problems 8.11 to 8.14. The components of the rate of deformation D are given by
the symmetric part of the answer to Problem 8.13 and the only nonzero component is

a
b

r

v(r)

Figure 22.4 Cylindrical Couette flow between a rotating inner cylinder of radius a and a stationary
concentric outer cylinder of radius b.
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Dr𝜃 = 𝜇𝜎r𝜃 . Using the answer to Problem 8.14 to determine the equilibrium equation
yields an equation for v(r). Alternatively, the equation for v(r) can be obtained by
applying the answer to Problem 8.11 to v(r)e𝜃 , taking account of the derivatives of e𝜃 .]
(a) Determine the velocity profile between the cylinders.
(b) Determine the shear stress on the inner cylinder.
(c) Determine the relation between the torque and angular velocity on the inner

cylinder and explain how it can be used to determine the viscosity.

22.3 Consider the same problem solved in Section 22.2.1, but now the plate is stationary and
the velocity far away from the plate (y → ∞) is V for all t ≥ 0. Determine the solution
for the velocity and determine the velocity (as a percentage of V ) at a distance of 1 m
from the plate after 1 s for air, water and SAE 30 oil.

22.4 Consider the same problem solved in Section 22.2.1, but at t = 0 the plate begins to
oscillate as V = V0 cos(𝜔t). Determine the fluid velocity as a function of y and t after
the plate has been oscillating for a long time. Plot the velocity (divided by V0) against
the non-dimensional distance

√
𝜔∕2c y for several values of the non-dimensional time

𝜔t. [Hint: You may find it easier to work with V = V0 exp(i𝜔t) and take the real part.]

Reference

Aris R 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover.



23
Elasticity

23.1 Nonlinear Elasticity

The simple fluid constitutive relations we considered in the last chapter depended only on
the rate of deformation (rather than the strain) and, hence, the issue of the appropriate large-
strain measure does not arise. The response of solids does, in general, depend on the strain.
Fortunately, for many applications, the magnitude of the strain is small, and this makes it
possible to consider a linearized problem that introduces considerable simplification. Although
this is often a very good approximation, it should be noted that it is strictly valid only for
infinitesimal displacement gradients and needs to be reevaluated whenever this is not the
case. Before specializing to the case of linearized elasticity, we consider some more general
descriptions of elastic materials for finite strain.

23.1.1 Cauchy Elasticity

A minimal definition of an elastic material is one for which the stress depends only on the
deformation gradient (rather than, say, the deformation history, or various internal variables)

𝝈 = g(F) (23.1)

This formulation is typically referred to as Cauchy elasticity. Other features often associated
with elasticity are the existence of a strain energy function, a one-to-one relation between stress
and strain measures, deformation does not result in any energy loss, or the body recovers its
initial shape upon unloading.

Since the relation (23.1) reflects material behavior we expect it to be independent of rigid
body rotations. This is called the principle of frame indifference or material objectivity. A
consequence is that the relation (23.1) should depend only on the deformation U and not the
rotation R in the polar decomposition F = R ⋅ U. If we consider a pure deformation U, then
(23.1) becomes

𝝈 = 𝜎KLNKNL = g(U) (23.2)

Fundamentals of Continuum Mechanics, First Edition. John W. Rudnicki.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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where 𝜎KL are components of the Cauchy stress with respect to the principal axes of U in
the reference state. Application of a rotation R causes only a rotation but no stretching or
additional stress so that

𝝈 = 𝜎KLnKnL (23.3)

That is, the components of 𝝈 do not change but are now with respect to the principal axes in
the current state. Since nK = R ⋅ NK = NK ⋅ RT , (23.3) becomes

𝝈 = R ⋅ (𝜎KLNKNL) ⋅ RT

or, using (23.2),

𝝈 = R ⋅ g(U) ⋅ RT

The result can be rewritten as

RT ⋅ 𝝈 ⋅ R = g(U) (23.4)

The quantity on the left side is the rotationally invariant Cauchy stress �̂�. Independence of the
constitutive relation to rigid body rotations requires that �̂� be a function of the deformation U.

Because U and R are not easily computed, it is more convenient to rewrite (23.4) by defining

g(U) = U ⋅ h(U2) ⋅ UT (23.5)

Substituting (23.5) into (23.4), multiplying from the right by R and from the left by RT , and
noting that FT ⋅ F = U2 gives

𝝈 = F ⋅ h(FT ⋅ F) ⋅ FT

Further rearrangement gives

SPK2 = k(EG) (23.6)

where SPK2 is the second Piola–Kirchhoff stress (21.12) and EG is the Green–Lagrange strain
(16.3), (16.4), (16.5), or (16.6). Thus, a constitutive relation in this form is guaranteed to be
independent of rigid body rotations. More generally, this is true for a similar relation between
any material strain measure E and the corresponding work-conjugate stress tensor S.

23.1.2 Green Elasticity

Green elasticity assumes the existence of a strain energy density function W. The existence of
W can be motivated by the conservation of energy (21.7):

𝜕W
𝜕t

= S ⋅ ⋅Ė − 𝛁X ⋅ Q + 𝜌0R (23.7)

here written in the reference state where S and Ė are work-conjugate stress and strain-rate
measures (see (21.11)) and W = 𝜌0u is the internal energy per unit reference volume. For
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isothermal (constant temperature) or adiabatic (no heat flow) conditions the last two terms are
absent. Regarding W as a function of E leads to

(
𝜕W
𝜕Eij

− Sij

)

Ėij = 0

Because this must apply for all Ėij,

Sij =
𝜕W
𝜕Eij

(23.8)

where W is to be written symmetrically in Eij and Eji. If W is regarded as a function of
the deformation gradient F, then similar considerations based on (23.7) yield the following
expression for the nominal stress:

T0
ij =

𝜕W
𝜕Fji

(23.9)

23.1.3 Elasticity of Pre-stressed Bodies

As already noted, the strains are small for many practical applications. Often, the elasticity
equations for this idealization are stated directly without reference to a more general
formulation for arbitrary deformation magnitudes. Seeing how these equations arise from
linearization of a more general formulation is, however, an educational exercise. Moreover,
we will see that if the material response is linearized about a pre-stressed state, then it is
not sufficient for the strains to be small to reduce the formulation to the usual one of linear
elasticity. More specifically, the moduli governing changes in the different stress measures
will depend on the pre-stress and, consequently, it is necessary to retain the distinction
between the different stress measures.

The stress–strain relation is given by (23.6) or by (23.8) if a strain energy function exists.
Here we specialize to the case of Green–Lagrange strain and the work-conjugate stress mea-
sure, the second Piola–Kirchhoff stress. To simplify the notation, we drop the superscripts PK2
and G. Now, we expand the stress–strain relation in a Taylor series about the strain-free state:

Sij = (Sij)E=0 + CijklEkl + BijklmnEklEmn +… (23.10)

Since deformation is measured from the reference state

(Sij)E=0 = �̄�ij

is the Cauchy stress in the reference state. Because the displacement gradients are assumed
to be small, the quadratic terms in Green–Lagrange strain can be neglected, Eij reduces to
the infinitesimal strain tensor 𝜀ij, (17.6) and (17.7), and only linear terms need be retained in
(23.10). Therefore, the stress is given by

Sij = �̄�ij + Cijkl𝜀kl (23.11)

where the neglected terms are at least as small as |𝜕ui∕𝜕Xj|
2.
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Changes in the second Piola–Kirchhoff stress 𝛿Sij = Sij − �̄�ij are given by

𝛿Sij = Cijkl𝜀kl

The moduli Cijkl are symmetric with respect to the interchange of indices i and j and k and l
because of the symmetry of the stress and the strain. As a consequence of the former, the strain
𝜀kl can be replaced by the displacement gradient uk,l = 𝜕uk∕𝜕Xl. If a strain energy density
function exists (23.8), then the moduli have the additional symmetry

Cijkl =
𝜕2W

𝜕𝜀ij𝜕𝜀kl
= Cklij (23.12)

because the derivatives can be taken in either order. In the following, we will assume that a
strain energy density function exists.

Because the derivatives entering the Green–Lagrange strain are with respect to position in
the reference configuration, we use the equation of motion referred to the reference state:

𝜕T0
ij

𝜕Xi
+ 𝜌0b0

j = 𝜌0

𝜕2uj

𝜕t2
(23.13)

where all quantities are to be thought of as functions of position in the reference configuration
and time. The nominal stress is related to the nominal traction by

NiT
0
ij = t0j (23.14)

on the boundary of the body. Consequently, we need to express the nominal stress T0 in terms
of the second Piola–Kirchhoff stress S, given here in index form,

T0
ij = SikFT

kj = SikFjk

Substituting the deformation gradient Fjk in terms of the displacement gradient 𝜕uj∕𝜕Xk gives

T0
ij = Sij + Sikuj,k (23.15)

where (…), k denotes 𝜕(…)∕𝜕Xk. Substituting (23.11) into (23.15) yields

T0
ij = �̄�ij + Cijkl𝜀kl + �̄�ikuj,k (23.16)

where, again, terms beyond linear in displacement gradient have been neglected. Thus, the
change in nominal stress is given by

𝛿T0
ij = C0

ijkluk,l

where

C0
ijkl = Cijkl + �̄�il𝛿kj (23.17)

Because neither the nominal stress T0
ij nor the displacement gradient uk,l is symmetric, C0

ijkl
is not symmetric with respect to the interchange of the first two and last two subscripts. The
moduli (23.17) do, however, satisfy the symmetry C0

ijkl
= C0

lkji
as a result of (23.9). Thus, when

a component of the pre-stress is comparable to one of the moduli, the difference between C0
ijkl
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and Cijkl cannot be neglected. This can occur if either the pre-stress is large or the incremental
moduli are small. An example of the first is the interior of the Earth where hydrostatic stress
is very large even though strains due to the propagation of waves are small. An example of
the second occurs when the response is linearized about a point where the local slope of the
stress-strain curve is small.

Equation (23.16) can be rewritten as

𝛿T0
ij = Cijkl𝜀kl + �̄�ik𝜀jk + �̄�ikΩjk (23.18)

where Ωjk is the infinitesimal rotation tensor (17.22) or (17.23). Even if the strains are small
and the components of �̄�ik are small compared to components of Cijkl, the last term in (23.18)
will not be negligible if the product of the pre-stress and the rotation is comparable to the
product of the moduli and the strain. A familiar example is the buckling of a column. If 𝜅
is the curvature, strains are on the order 𝜅h where h is the thickness of the column. The
rotations are on the order 𝜅l where l is the length of the column. Since buckling typically
occurs when l ≫ h, rotations will be much larger than strains. As a result, buckling is one
of the few examples in elementary strength of materials where equilibrium is written for a
deformed (slightly buckled) state of the body.

Similar results can be derived for the Cauchy stress 𝝈 and the Kirchhoff stress 𝝉 = J𝝈
where J = det(F). Linearizing the expression for the Kirchhoff stress in terms of the second
Piola–Kirchhoff stress 𝝉 = F ⋅ S ⋅ FT yields

𝛿𝜏∗ij = C𝜏
ijkl𝜀kl

where

𝛿𝜏∗ij = 𝛿𝜏ij − Ωil�̄�lj − Ωjl�̄�li

is the increment of 𝜏ij computed in a frame that is instantaneously rotating with the material
and the

C𝜏
ijkl = Cijkl +

1
2

{𝛿ki�̄�lj + 𝛿li�̄�kj + 𝛿kj�̄�il + 𝛿lj�̄�ik} (23.19)

are written symmetrically with respect to the interchange of i and j, k and l, and ij with kl. The
incremental moduli for the Cauchy stress are

C𝜎
ijkl = C𝜏

ijkl − �̄�ij𝛿kl (23.20)

Note that even if a strain energy density function exists so that Cijkl = Cklij and C𝜏
ijkl = C𝜏

klij,
C𝜎

ijkl ≠ C𝜎
klij.

We assume that the reference state itself is an equilibrium state,

𝜕�̄�ij

𝜕Xi
+ 𝜌0b̄0

j = 0 (23.21)

where 𝜌0b̄0
j is the body force in the reference state per unit reference volume and the surface

traction in the reference state is

t̄0j = Ni�̄�ij (23.22)
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Substituting (23.16) into (23.13) and (23.14) and subtracting (23.21) and (23.22) yields

𝜕

𝜕Xi

{

Cijkl𝜀kl + �̄�ik

𝜕uj

𝜕Xk

}

+ 𝜌0

(
b0

j − b̄0
j

)
= 𝜌0

𝜕2uj

𝜕t2
(23.23)

and

Ni{Cijkl𝜀kl} = t0
j − t̄0

j − Ni�̄�ik

𝜕uj

𝜕Xk

where 𝜀jk is the infinitesimal strain from the reference state.
When the terms involving �̄�ik can be dropped the usual linear elasticity equations result.

This will be the case for the conditions just discussed, but it is worth noting that it is the
derivatives of the displacement gradients that enter the equation of motion and these may have
magnitudes larger than those of the strains and rotations.

23.2 Linearized Elasticity

Here we specialize immediately to small (infinitesimal) displacement gradients and no pre-
stress. This is the conventional formulation of linear elasticity. In this case, the stress 𝜎ij is
related to the small (infinitesimal) strain tensor by

𝜎ij = Cijkl𝜀kl (23.24)

where Cijkl is an array of material parameters. If the material is homogeneous, the material
properties are independent of position and the Cijkl are constant. In general, Cijkl has 34 = 81
components but because the stress is symmetric, 𝜎ij = 𝜎ji, as is the strain, 𝜀kl = 𝜀lk, the number
is reduced to 6 × 6 = 36. If, in addition, a strain energy density function exists so that the stress
is given by

𝜎ij =
𝜕W
𝜕𝜀ij

then Cijkl satisfies the additional symmetry (23.12)

Cijkl = Cklij (23.25)

and the strain energy density is

W = 1
2
𝜀ijCijkl𝜀kl (23.26)

Because of these symmetries, (23.24) relates six distinct components of stress to six distinct
components of strain. Consequently, for an anisotropic material, it is often convenient to treat
𝜎ij and 𝜀ij as six-component vectors that are related by a 6 × 6 matrix

𝜎i = Cij𝜀j
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or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜀11
𝜀22
𝜀33

2𝜀23
2𝜀31
2𝜀12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where C11 = C1111, C12 = C1122, C13 = C1133, C14 = (C1123 + C1132)∕2, C15 = (C1131 +
C1113)∕2, C16 = (C1112 + C1121)∕2, and so on. If a strain energy density function exists,
the symmetry (23.25) implies that Cij = Cji and this results in the reduction from 36 to 21
constants for an anisotropic linear elastic material.

23.2.1 Material Symmetry

The number of distinct components of Cijkl can be reduced further if the material possesses any
symmetries. Material symmetry can result from crystal structure, processing, or conditions
of formation. An example of material processing would be drawing or forming processes.
An example of symmetry due to conditions of formation is a sandstone which is formed by
deposition in layers.

One approach proceeds along the lines of the discussion of isotropic tensors (6.4). Because
Cijkl is a (fourth-order) tensor its components in a coordinate system with unit orthogonal base
vectors ei must be related to the components C′

ijkl
in a system of base vectors e′i by

C′
ijpq = AkiAljAmpAnqCklmn

where Aik = e′k ⋅ ei. If the material possesses a symmetry such that tests of the material in two
coordinate systems cannot distinguish between them, then, for those two coordinate systems,
C′

ijkl = Cijkl and hence

Cijpq = AikAjlApmAqnCklmn

Suppose, for example, that the x1x2 plane is a plane of symmetry. Then a coordinate change
that reverses the x3 axis will not affect the behavior. For such a change, A11 = A22 = −A33 = 1
are the only nonzero Aij. Thus

C1223 = A11A22A22A33C1223 = −C1223

Hence C1223 = 0. Similar calculations show that any Cklmn having an odd number of threes as
indices are zero.

Alternatively, consider the matrix formulation. For changes of coordinate system that are
indistinguishable to the material

𝜎′i = C′
ij𝜀

′
i = Cij𝜀j = 𝜎i
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Again, consider the x1x2 plane as a plane of symmetry. Then 𝜎′1 = 𝜎1 and it follows that

C11𝜀1 + C12𝜀2 + C13𝜀3 + C14𝜀4 + C15𝜀5 + C16𝜀6

= C′
11𝜀

′
1 + C′

12𝜀
′
2 + C′

13𝜀
′
3 + C′

14𝜀
′
4 + C′

15𝜀
′
5 + C′

16𝜀
′
6

But the shear strains 2𝜀32 = 𝜀4 and 2𝜀31 = 𝜀5 reverse sign under the transformation that
reverses the x3 axis; that is, 𝜀′4 = −𝜀4 and 𝜀′

5
= −𝜀5. Therefore,

C14 = −C′
14 = −C14 = 0

and

C15 = −C′
15 = −C15 = 0

The remaining nonzero Cij are

Cij =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 C16
C21 C22 C23 0 0 C26
C31 C32 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C54 C55 0

C61 C62 C63 0 0 C66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A crystal structure resulting in a single plane of symmetry is called monoclinic.
An orthotropic material or a material with orthorhombic crystal structure has symmetry

with respect to three orthogonal planes. The nine nonzero Cij are

Cij =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23.27)

Note that the axial and shear stresses are completely uncoupled.
Hexagonal symmetry is symmetry with respect to 60◦ rotations. It turns out that this symme-

try implies symmetry with respect to any rotation in the plane, which is the same as transverse
isotropy. This leaves five nonzero Cij:

Cij =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C21 C11 C13 0 0 0
C31 C31 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2
(C11 − C12)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23.28)
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Cubic symmetry has three elastic constants. The material has three orthogonal planes of
symmetry and is symmetric to 90◦ rotations about the normals to these planes:

Cij =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C12 0 0 0
C21 C11 C12 0 0 0
C21 C21 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23.29)

23.2.2 Linear Isotropic Elastic Constitutive Relation

For isotropy, the response of the material is completely independent of direction. This imposes
the following additional relation on (23.29):

C44 = 1
2

(C11 − C12) (23.30)

Therefore, a linear elastic isotropic material is described by two elastic constants C12 = 𝜆 and
C44 = 𝜇. The stress-strain relation is given by

𝜎ij = 𝜆𝜀kk𝛿ij + 2𝜇𝜀ij (23.31)

where 𝜆 and 𝜇 are Lamé constants. If 𝜆 and 𝜇 are not functions of position, then the material
is homogeneous.

To invert (23.31) to obtain the strains in terms of the stresses, we first take the trace of
(23.31):

p = −K𝜀kk

where p = −𝜎kk∕3 is the pressure and

K = 𝜆 + 2
3
𝜇

is the bulk modulus. Recall that for small displacement gradients 𝜀kk is approximately equal
to the volume strain, that is, the change in volume per unit reference volume. Hence K relates
the pressure to the volume strain. For an incompressible material K → ∞; that is, the volume
strain is zero, regardless of the pressure. (Note that incompressible does not mean that the
material is non-deformable, but only that it deforms with zero volume change.) Substituting
for 𝜀kk into (23.31) and rearranging yields

2𝜇𝜀ij = 𝜎ij − 𝜎kk𝛿ij
𝜆

(3𝜆 + 2𝜇)
(23.32)
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Now consider a uniaxial stress: only 𝜎11 is nonzero. The strain 𝜀11 = 𝜎11∕E where

E = 𝜇(3𝜆 + 2𝜇)
(𝜆 + 𝜇)

(23.33)

is Young’s modulus.
The strain in the lateral direction

𝜀22 = −𝜈𝜀11

where

𝜈 = 𝜆

2(𝜆 + 𝜇)
(23.34)

is Poisson’s ratio. Equation (23.32) can be rewritten in terms E and 𝜈 as

𝜀ij =
(1 + 𝜈)

E
𝜎ij −

𝜈

E
𝜎kk𝛿ij

Some additional useful relations among the elastic constants are

2𝜇 = E
1 + 𝜈

(23.35)

and

𝜆 = 2𝜇
𝜈

1 − 2𝜈
(23.36)

23.2.3 Restrictions on Elastic Constants

The existence of a strain energy function places restrictions on the values of the elastic
constants. These restrictions arise from the requirement that the strain energy function be
positive

W(𝜀) > 0 (23.37)

if 𝜀 ≠ 0 and W(0) = 0. The strain-energy density function is given by (23.26). The condition
(23.37) requires that Cijkl be positive definite.

For an isotropic material

W = 1
2

{
𝜆(𝜀kk)2 + 2𝜇𝜀ij𝜀ij

}
(23.38)

Because 𝜀ij and 𝜀kk are not independent, we cannot conclude from (23.37) that the coefficients
𝜆 and 𝜇 are positive. Consequently, we rewrite (23.38) in terms of the deviatoric strain

𝜀′ij = 𝜀ij −
1
3
𝛿ij𝜀kk

to get

W = 1
2

{(

𝜆 + 2
3
𝜇

)

𝜀2
kk + 2𝜇𝜀′ij𝜀

′
ij

}

(23.39)
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Because each of 𝜀kk and 𝜀′ij can be specified independently, (23.37) requires that the bulk

modulus K =
(
𝜆 + 2

3
𝜇
)

and shear modulus𝜇 be positive. These conditions require that Young’s
modulus E > 0 and that Poisson’s ratio be within the range

− 1 < 𝜈 <
1
2

(23.40)

Note that for negative 𝜈 a bar that increases its length due to uniaxial tension will also increase
its cross-sectional area. Although some materials have been fabricated recently with 𝜈 < 0,
the practical limits on 𝜈 are

0 < 𝜈 < 0.49

Cork is a material with 𝜈 ≈ 0, a desirable property for use as a stopper in wine bottles. Rubber
is nearly incompressible, 𝜈 = 0.49. Steel and aluminum have Poisson’s ratios of about 0.28
and 0.33, respectively.

23.3 More Linearized Elasticity

The linearized equation of motion with no pre-stress (23.23) is

𝜕𝜎ij

𝜕Xi
+ 𝜌0b0

j = 𝜌0

𝜕2uj

𝜕t2

Substituting (23.31) for an isotropic material, assuming the elastic constants are independent
of position (homogeneous), and neglecting the body force yields the Navier equations

(𝜆 + 𝜇)
𝜕2uk

𝜕Xk𝜕Xj
+ 𝜇

𝜕2uj

𝜕Xk𝜕Xk
= 𝜌0

𝜕2uj

𝜕t2
(23.41)

or in coordinate-free notation

(𝜆 + 𝜇)𝛁X(𝛁X ⋅ u) + 𝜇∇2
Xu = 𝜌0

𝜕2u
𝜕t2

(23.42)

As a simple example of solutions of this equation, look for displacements of the form

ui = fi(n ⋅ X − ct) (23.43)

These are solutions for which the displacement is constant on planes with unit normal n
traveling at a speed c. Hence, they represent plane waves. Substituting (23.43) into (23.41)
yields

(𝜆 + 𝜇)nj

(
nkf ′′k

)
+ 𝜇f ′′j = 𝜌0c2f ′′j (23.44)
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where (…)′ denotes the derivative with respect to the argument. Forming the scalar product of
(23.44) with nj yields

c = cL =
√

(𝜆 + 2𝜇)∕𝜌0

cL is the bulk or dilatational wave speed. In seismology, this is called the primary wave speed.
The displacements are orthogonal to the wave front. Similarly, forming the scalar product of
(23.44) with vectors orthogonal to n yields the shear or transverse wave speed

c = cS =
√
𝜇∕𝜌0

for which the displacements are parallel to the plane of the wave. Since cL > cS, the dilatational
wave arrives before the shear wave and the difference in arrival times can be used to infer the
elastic constants.

23.3.1 Uniqueness of the Static Problem

Solutions to elasticity problems can be obtained in any number of ways. Having obtained a
solution, it is important to know that there is no other solution to the same problem. Here we
will show that this is the case. Actually, we would like to know that any slight change in the
problem formulation leads to solutions that are close in some sense. This can be shown, as
well, but is more involved and we will therefore restrict focus to uniqueness.

Thus we will consider a static problem satisfying the equilibrium equation

𝜕𝜎ij

𝜕Xi
+ 𝜌0b0

j = 0 (23.45)

the constitutive equation (23.24), the strain displacement equations

𝜀ij =
1
2

(
𝜕ui

𝜕Xj
+

𝜕uj

𝜕Xi

)

(23.46)

and boundary conditions. The boundary conditions may be of several types:

� Specify the traction t everywhere on the boundary.
� Specify the displacement u everywhere on the boundary.
� Specify the traction t on some portions of the boundary and the displacement u on all other

portions of the boundary.
� Specify one of each pair tiui on some portion of the boundary and either t or u on all other

portions of the boundary.

There are other possibilities but those above cover most situations. Assume that there are
two solutions that satisfy (23.45), (23.24), (23.46), and the boundary conditions and let their
difference be denoted by Δui, Δ𝜎ij. Because both solutions satisfy (23.45)

𝜕Δ𝜎ij

𝜕Xi
= 0 (23.47)
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Forming the scalar product of Δuj with (23.47) and integrating over the volume leads to

∫v
Δuj

𝜕Δ𝜎ij

𝜕Xi
dv = 0

Rewriting the first term as

Δuj

𝜕Δ𝜎ij

𝜕Xi
=

𝜕(ΔujΔ𝜎ij)

𝜕Xi
− Δ𝜎ij

𝜕Δuj

𝜕Xi

then using the divergence theorem, Δ𝜎ij = Δ𝜎ji, and (23.46) yields

∫v
Δ𝜎ijΔ𝜀ji dv =

∫a
ΔtiΔui da

The right hand side vanishes for any of the boundary conditions specified above. Because both
solutions satisfy the same constitutive relation (23.24)

∫v
Δ𝜀ijCijklΔ𝜀kl dv = 0

Because of (23.37), Cijkl is positive definite, and the integrand can vanish only if

Δ𝜀ij = 0 (23.48)

establishing that the stress and strain are unique. The displacements are not unique but (23.48)
requires that the difference have the following form:

Δui = AijXj + Bi (23.49)

where the Bi and Aij are constant and Aij is antisymmetric. Thus, the displacement fields can
differ by a translation and rigid rotation. Specifying displacements on a portion of the body
rules out this possibility.

23.3.2 Pressurized Hollow Sphere

As an example of the solution of a linear elastic boundary value problem consider the hollow
sphere subjected to internal and external pressure shown in Figure 23.1. The sphere is subjected
to a pressure Pb at radius r = b and a pressure Pa at radius r = a. Obviously the displacement
depends only on the radial coordinate r =

√
XkXk. This problem is, perhaps, more naturally

solved in spherical coordinates. Nevertheless, solution in rectangular Cartesian coordinates
presents little additional complications by noting that the components of a unit vector in the
radial direction are Xi∕r. Consequently, the Cartesian components of the displacement must
have the form

ui =
Xi

r
u(r) (23.50)
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a

b

r

Pb

Pa

Figure 23.1 Internally and externally pressurized sphere.

where u(r) is the displacement in the radial direction. Because we have focused on rectangular
coordinates we will use this approach.

The boundary condition at r = b is

(Xi∕b)𝜎ij = −Pb(Xj∕b) (23.51)

and at r = a is

−(Xi∕a)𝜎ij = Pa(Xj∕a) (23.52)

where the minus sign in (23.51) occurs because the pressure is in the negative radial direction
and that in (23.52) because the normal to the boundary is in the negative radial direction. The
derivatives of (23.50) needed for substitution in (23.41) are calculated as follows:

𝜕ui

𝜕Xj
= u(r)

{
𝛿ij

r
−

XiXj

r3

}

+
XiXj

r2
u′(r)

where u′(r) = du∕dr. Calculating the other derivatives in similar fashion and substituting in
(23.41) with zero right side gives

(𝜆 + 2𝜇)
Xi

r
{r2u′′(r) + 2ru′(r) − 2u(r)} = 0

and, consequently, the term {…} must vanish. Looking for a solution of the form rn reveals
that

u(r) = A
r2

+ Br

where A and B are constants. The first term gives a strain that is purely deviatoric and the
second a strain that is a uniform dilatation.
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The stress components calculated from (23.31) are

𝜎ij = B𝛿ij +
A
r3

{

𝛿ij −
3XiXj

r2

}

(23.53)

where A and B have been redefined to absorb the elastic constants. The radial component of
stress, 𝜎r, is

𝜎r =
xi𝜎ijxj

r2
= B − 2A

r3

Substituting into (23.51) and (23.52) and solving for A and B gives

A = (Pa − Pb)
a3b3

2(b3 − a3)

and

B =
(
Paa3 − Pbb3

)

b3 − a3

Because A and B are independent of the elastic constants, so is the stress field, a consequence
of the all-traction boundary conditions. The hoop stress 𝜎𝜃 can be calculated by taking the
trace of (23.53), noting that it is invariant and must equal 𝜎r + 2𝜎𝜃 in spherical coordinates.

Exercises

23.1 Derive (23.9) directly from (23.8) by regarding the strain energy as a function of the
deformation gradient, i.e., W = W(F), and computing

𝜕W
𝜕Fmn

= 𝜕W
𝜕Eij

𝜕Eij

𝜕Fmn

23.2 The constitutive equation for an elastic material with a strain energy density function
W can be expressed as (23.8) where Sij is the second Piola–Kirchhoff stress and Eij
is the Green–Lagrange strain. For an isotropic material W can be expressed in terms
of the invariants of the Green strain or, equivalently, the invariants of the Cauchy
deformation tensor C = FT ⋅ F. Thus, W = W(I1, I2, I3) where the invariants I1 and
I2 are given by (7.9) and (7.10) and I3 is given by the result of Problem 7.3.
(a) Show that the second Piola–Kirchhoff stress S is given by

S = 2{W1 − I1W2 − I2W3}I + 2{W2 − I1W3}C + 2W3C ⋅ C

where Wi = 𝜕W∕𝜕Ii.
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(b) By using the relation 𝜎 = |F|−1F ⋅ S ⋅ FT , show that the Cauchy stress 𝜎 is
given by

𝝈 = 2|B|−1∕2{I3W3I + (W1 − I1W2)B + W2B ⋅ B}

where B = F ⋅ FT is the Finger deformation tensor.
(c) Use the result of Problem 7.4.a in (b) to show that

𝝈 = 2|B|−1∕2 {(I3W3 + I2W2)I + W1B + W2I3B−1}

23.3 Derive (23.19) and (23.20).

23.4 Show that the difference between the linearized versions of the Cauchy stress and the
Kirchhoff stress (23.20) is negligible if the volume strain is small.

23.5 A constitutive relation for heat conduction is Fourier’s law

qi = Kij
𝜕T
𝜕xj

where q is the heat flux vector, T is the temperature, and K is the thermal conductivity
tensor, a material property.
(a) If the heat flux can be expressed in terms of a scalar potential function G,

qi =
𝜕G
𝜕T ,i

where T ,i = 𝜕T∕𝜕xi, what condition does this impose on K, the thermal conduc-
tivity tensor? In this case, what is the number of independent components of
K?

(b) If the x1x3 plane is a plane of material symmetry, determine the reduced form of
the conductivity tensor.

(c) If, in addition, the x1x2 plane is a plane of material symmetry, again determine
the reduced form of the conductivity tensor.

(d) If the material is isotropic, determine the form of K.

23.6 Show that material symmetry with respect to 60◦ rotations about the X3 axis reduces
(23.27) to (23.28). Verify that such a material is symmetric with respect to any rotation
about the X3 axis.

23.7 Show that an isotropic material imposes the additional relation (23.30) on (23.29).

23.8 Derive (23.33) and (23.34).

23.9 Derive (23.35) and (23.36).

23.10 Determine the modulus M for uniaxial strain

𝜎11 = M𝜀11

where 𝜀11 is the only nonzero strain component and determine the ratio 𝜎22∕𝜎11.
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23.11 A state of plane strain exists if 𝜀33 = 𝜀13 = 𝜀23 = 0.
(a) Show that for plane strain

𝜎33 = 𝜈(𝜎11 + 𝜎22)

(b) Show that

𝜀𝛼𝛽 = 1 + 𝜈

E
{𝜎𝛼𝛽 − 𝜈(𝜎11 + 𝜎22)}

where 𝛼, 𝛽 = 1, 2.

23.12 Show that for an isotropic material the strain energy can be written as (23.39).

23.13 Show that the conditions K > 0 and 𝜇 > 0 require E > 0 and (23.40).

23.14 In the solution for the pressurized sphere take b → ∞, Pb → 0, and a → ∞ but maintain
the product a3Pa = m as finite. Specialize the stress and displacement fields for this
case. This is the singular (since the stress and displacement become unbounded)
solution of a center of dilatation.

23.15 The spherically symmetric solution can also be used to solve the problem of a spherical
inclusion, a special case of a more general solution by Eshelby (1957). Consider an
infinite material in which a spherical region of radius r = a undergoes a transformation
strain which would correspond to an increase of radius to a + 𝜀0a in the absence of the
constraint of the surrounding material. This transformation is assumed not to change
the elastic properties of the region. Depending on the application, this strain may
be due to a phase transformation, injection of fluid, increase of temperature, etc. It
is desired to determine the actual strain undergone in this region in the presence of
the constraint of the surrounding material. Eshelby (1957) solved this problem by
an ingenious procedure of cutting, transforming, and reinserting the inclusion. The
procedure is outlined in this problem.
(a) Remove the spherical region of radius a from the material. Due to phase trans-

formation etc., the region increases its radius to a + 𝜀0a without stress. Show that
𝜀0 is one-third of the volume strain.

(b) Determine the pressure pa that must be applied at r = a to restore the radius of
this region to a. Because the inclusion is its original size, it can be reinserted
without causing stress. But the material now contains a force layer at r = a
corresponding to

𝜎−rr(a) = 𝜎+rr(a) + pa

where the plus and minus signs indicate that boundary is approached from r
greater than or less than a. Using the appropriate solutions inside and outside
of a, the condition above, and continuity of displacements show that the actual
strain of the inclusion (region r ≤ a) is

𝜀 =
𝜆 + 2𝜇∕3

𝜆 + 2𝜇
𝜀0

and that the pressure in the inclusion is 4𝜇𝜀.
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23.16 Consider the same problem but take the point of view that transformation of the
inclusion causes a spherical dislocation, that is, a radial displacement discontinuity

u+ = u− + 𝜀0

Show that using this condition and continuity of radial stress yields the same result as
the preceding problem.

Reference

Eshelby JD 1957 The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings
of the Royal Society of London A 241, 376–396.
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𝜖–𝛿 identity, 34, 43, 108, 155

Adjugate, 43
Almansi strain tensor, 123, 125
Angular velocity, 108
Anisotropic material, 182

Base vectors, 21, 22, 24, 47, 50, 57, 64
Basis, non-orthonormal, 36
Biot strain tensor, 123
Body force, 71, 153

Cartesian components, 24
Cauchy deformation tensor, 113
Cauchy stress tensor, 156, 163, 178, 181
Cauchy stress, rotationally invariant,

178
Cauchy tetrahedron, 75
Cayley–Hamilton theorem, 59
Cofactor, 42
Compatibility, small strain, 133
Components

cross product, 31
scalar, 22
tensor, 21
triple scalar product, 33
triple vector product, 33
vector, 21, 22

Configuration
current, 97, 111
reference, 97, 111

Control volume, 146, 150, 153
Coordinate-free representation, 22
Coordinate system

Cartesian, 21
cylindrical, 66
orthonormal, 47

Cubic material, 185
Curl, 65, 148
Current configuration, 97, 105, 111, 118
Cylindrical coordinate system, 66

Deformation gradient tensor, 111, 129, 158,
179, 180

Deformation tensor, 116, 117
Density, 71, 169
Derivative following a material particle,

100
Determinant, 32, 58, 98, 131

cofactor, 41
column expansion, 42
row expansion, 41, 42
triple scalar product, 33

Deviatoric tensor, 80
invariants, 81

Direction cosines, 48
Displacement gradient, infinitesimal, 129
Displacement, single-valued, 135
Divergence, 65, 147, 150
Divergence theorem, 139, 146, 150, 153,

155, 162, 189
reference configuration, 156
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Dual vector, 108
Dyad, 25

transpose of, 26
Dyadic, 25, 26, 47, 57, 58, 65

antisymmetric, 27
multiplication by a vector, 26
skew symmetric, 27
symmetric, 27
transpose of, 26

Eigenvalue, 16
Eigenvector, 16
Energy

internal, 161, 162, 170
kinetic, 161
strain, 177, 178, 180–182, 186

Equation of motion, 154, 155, 162, 172, 180,
187

Equation of state, 169
Equilibrium equation, 154, 188
Eulerian description, 99, 124

acceleration, 100
scalar property, 99
velocity, 99

Finger tensor, 113
Finite rotation, 6
First Piola–Kirchhoff stress, 156
Fluid

ideal, 169
Newtonian, 171, 173
perfect, 169
Stokesian, 171

Flux, 147, 150
Flux, heat, 161, 163
Flux, momentum, 153
Forces

body, 71
surface, 72

Fourier’s law, 171

Gradient, 63
Gradient operator, cylindrical coordinates,

66
Gradient, of a tensor, 66
Gradient, of a vector, 64

Green deformation tensor, 112, 117, 129
Green’s theorem, 139
Green–Gauss theorem, 139
Green–Lagrange strain, 122, 124, 164, 178,

179
Green–Lagrange strain tensor, 180

Heat equation, 171, 173
Hexagonal material, 184
Homogeneous material, 171, 182, 185

Identity matrix, 43
Identity tensor, 14, 27, 28
Identity, 𝜖–𝛿, 34
Incompressible material, 147, 170, 185
Index

dummy, 23, 32
free, 22
repeated, 23
summation, 23, 32

Infinitesimal rotation tensor, 132, 181
Infinitesimal rotation vector, 135
Infinitesimal strain tensor, 130, 179, 182
Internal energy, 161, 162
Invariant, 91
Invariants, 59
Inverse, 15, 43, 58

deformation gradient tensor, 113
orthogonal tensor, 48

Irrotational velocity field, 108
Isotropic material, 171, 172
Isotropic tensor, 80, 171, 183

Jacobian, 146

Kinetic energy, 161
Kirchhoff stress, 164, 181
Kronecker delta, 22

Lagrange multiplier, 79, 85
Lagrangian description, 98

acceleration, 100
scalar property, 99
velocity, 99

Lamé constants, 185
Laplacian, 65
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Left Cauchy–Green tensor, 113
Logarithmic strain, 123

Material derivative, 100, 146, 147, 149,
156

Material objectivity, 177
Material rate of change, 100
Material strain tensor, 121, 125, 164,

178
Material velocity, 146
Material

anisotropic, 182
cubic, 185
hexagonal, 184
homogeneous, 171, 182, 185
incompressible, 170, 185
isotropic, 171, 172
monoclinic, 184
orthotropic, 184
rigid, 171
transversely isotropic, 184

Matrix
identity, 43
inverse, 43

Mixture theory, 150
Modulus, bulk, 185
Modulus, Young’s, 186
Moment of a force, 34
Monoclinic material, 184
Motion, 97
Motion, rigid body, 102

Nanson’s formula, 115, 157, 163
Navier equations, 187
Navier–Stokes equations, 172
Newton’s second law, 73, 75, 153
Newtonian fluid, 171, 173
Nominal stress, 156, 158
Nominal stress tensor, 163, 179, 180
Normal, to a surface, 64

Orthogonal tensor, 16, 58
Orthogonal tensor, inverse, 48
Orthonormal, 57
Orthonormal base vectors, 47
Orthotropic material, 184

Perfect gas law, 169
Permutation symbol, 32, 41
Plane waves, 187
Poise, 173
Poisson’s ratio, 186, 187
Polar decomposition, 177
Polar vector, 108
Potential function, 135
Potential theory, 139
Pressure, thermodynamic, 169
Principal directions, 16, 79, 114
Principal invariants, 59
Principal value, 16
Principal values, 79
Principle of frame indifference, 177

Rate of deformation, 106, 124, 171
normal components, 107
off-diagonal components, 107
principal values, 107

Rate of extension, 107
Reference configuration, 97, 105, 111, 118,

129, 131, 155, 163
Reynolds’ transport theorem, 153, 155, 157,

162
Right Cauchy–Green tensor, 112
Right hand rule, 8, 31
Rigid body rotation, 34
Rotation tensor, 117

infinitesimal, 132, 135, 181
Rotation, finite, 6

Scalar product, 7, 14, 22, 24, 33, 36, 49, 57,
65, 74, 83, 189

of a tensor, 28
Second Piola–Kirchhoff stress, 164, 178–181
Shear, 114, 131
Shear traction

maximum, 86
maximum magnitude, 92

Small-strain tensor, 121, 124, 130
Specific heat, 170
Specific volume, 170
Spin tensor, 106, 125
Stationary values, of normal traction, 80
Stokesian fluid, 171
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Strain energy, 177, 178, 180–182, 186
Strain tensor

Almansi, 123
Biot, 123
Green–Lagrange, 122, 124, 164, 178–180
infinitesimal, 130, 179, 182
logarithmic, 123

Stress tensor, 74, 75
Second Piola–Kirchhoff, 178–181
Cauchy, 156, 163, 178, 181
first Piola–Kirchhoff, 156
Kirchhoff, 164, 181
nominal, 156, 163, 179, 180
rotationally invariant Cauchy, 178
second Piola–Kirchhoff, 164
work-conjugate, 178

Stress vector, 73
Stress,

Cartesian components, 74
dyadic representation, 74
normal, 74
normal component, 79
principal values, 92
shear, 74

Stretch ratio, 112, 130
Stretch ratio, principal, 121
Summation convention, 23
Summation convention, rules, 23
Surface forces, 72

Temperature, 169
Tensor, 13
Tensor product, 27, 59, 102
Tensor

Second Piola–Kirchhoff stress, 164,
178–181

Almansi strain, 123
antisymmetric, 15, 106
Biot strain, 123
Cartesian components, 24
Cauchy deformation, 113
Cauchy stress, 163, 181
definition, 14, 51
deformation, 116, 117
deformation gradient, 111, 129, 179, 180
deviatoric, 80

displacement gradient, 129
eigenvalue, 16
Finger, 113
fourth order, 183
Green deformation, 112, 117, 129
Green–Lagrange, 179
Green–Lagrange strain, 122, 124, 164,

178, 180
identity, 14, 27, 28, 51
infinitesimal rotation, 132, 181
infinitesimal strain, 130, 179, 182
inverse, 15
isotropic, 80, 171, 172, 183
isotropic, fourth order, 52
Kirchhoff stress, 164, 181
left Cauchy-Green, 113
logarithmic strain, 123
material strain, 125, 164
material strain, 121
nominal stress, 163, 179, 180
nth order, 18
orthogonal, 16, 47, 48, 58
principal directions, 16
principal value, 16
rate-of-deformation, 106, 124, 171
right Cauchy–Green, 112
rotation, 117
rotationally invariant Cauchy stress,

178
scalar product, 28
second order, 18
skew symmetric, 15, 106
small strain, 121, 124
spin or vorticity, 106
stress, 74, 75
symmetric, 15, 27, 76, 79, 86
thermal conductivity, 171
third order, 66
transpose, 15
velocity gradient, 106, 162, 163

Thermal conductivity, 171
Thermal diffusivity, 171
Thermodynamic pressure, 169
Thermodynamics

first law, 161
second law, 171
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Trace, 28, 81, 131
Traction, 72, 153

normal, 84
normal component, 83, 87, 90
shear component, 83, 87, 90
stationary values, 80

Transpose, 15, 65
determinant of, 42
of a dyad, 26
of a dyadic, 26
of a matrix, 42
of a tensor product, 28
of a vector, 25

Transversely isotropic material, 184
Triple scalar product, 8, 41, 44, 115

components, 33
Triple vector product, 8

product, components, 33

Vector product, 7, 8
Vector

addition, 5, 24, 50
basis, 21
column, 25
components, 22
cross product, 7, 8, 65
definition, 50
dot product, 7
multiplication by a scalar, 5

parallelogram rule, 6
polar or dual, 108
right hand rule, 8
row, 25
scalar product, 7, 14, 24, 33, 36, 49
subtraction, 6
transpose, 25
vector product, 7, 8

Vectors
base, 21, 22, 24
coplanar, 33
non-coplanar, 36
orthogonal, 7, 32, 36
triple scalar product, 8
triple vector product, 8

Velocity, 99, 105
Velocity field, irrotational, 108
Velocity gradient tensor, 106, 162, 163
Viscosity

bulk, 172
dynamic, 173
shear, 172

Vorticity, 108
Vorticity tensor, 106

Wave speed, 188
Waves, plane, 187
Work conjugate, 164, 170, 178, 179
Work-conjugate stress tensor, 178
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