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Preface

Plate is a flat surface having considerably large dimensions compared to its thickness with supports
along few edges and is subjected to transverse load. For civil engineer common example of plate is a
slab. At undergraduate level students are taught design of slab by approximate methods or by using
moment co-efficients given in the code, without going through how they are obtained. At the post-
graduate level theory of plates is taught to structural engineering students to understand actual
load transfer in plate by elastic analysis. It involves forming and solving fourth order  differential
equations.

Shells are curved plates. The analysis of shells involves additional complexity. A design engineer
should understand mechanism of load transfer and internal forces developed in the shells. Shells are to
cover large area free of columns and architects prefer them for their aesthetic appeal. A structural
engineer has to learn theory of shells to design economical shell structures with more confidence.

In this book theory of plates and shells is explained. The analysis is restricted to classical method
only. Finite element method is the numerical method suitable for the analysis. Author has covered the
shell analysis by finite element analysis in his seperate book. A number of commercial packages are
available for the analysis by finite element method. But it is necessary that design engineer should have
basic knowledge of load transfer and internal forces that develop, which is possible by going through
classical theory. For validating the results obtained by finite element packages, classical theory for
commonly found standard cases is essential.

The book is essentially based on the lecture notes of the author taught to students of M.Tech.
(Industrial Structure) at NITK Surathkal and M.Tech. (Structural Engineering) at BVB College of
Engineering for over 40 years. The author hopes that the book will be quite useful as a textbook for
M.Tech. students to gain confidence in taking design of plates and shells.

S.S. BHAVIKATTI
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Introduction to Plates

Plate is a flat surface having considerably large dimensions as compared to its thickness. Common
examples of plates in civil engineering are

1. Slab in a building.
2. Base slab and wall of water tanks.
3. Stem of retaining wall.
A plate may have different shapes e.g. rectangular, triangular, elliptic, circular etc. as shown in

Fig. 1.1.

Fig. 1.1 Shapes of plates

A plate may have edge conditions like free, simply supported, fixed or elastically supported as
shown in Fig. 1.2.

Beam

Fig. 1.2 Edge conditions

Chapter
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2 THEORY OF PLATES AND SHELLS

In this chapter the coordinate system selected is clearly explained first and then various forces to be
considered on an element of plate are explained and sign conventions are made clear. At the end a brief
introduction is given to different theories available for the analysis of plates.

1.1 COORDINATE SYSTEMS
In the analysis of plates, cartesian coordinate system with right hand rule is used. According to this
when thumb, index finger and middle finger are stretched to show three mutually perpendicular direc-
tions, thumb indicates x-coordinate direction, index finger shows y-coordinate direction and middle
finger indicates z-coordinate direction. Figure 1.3 shows different orientation of x, y, z directions. The
equations derived for plate analysis with cartesian coordinate system with right hand rule hold good for
all these orientations. The commonly used orientation is that shown in Fig. 1.3(a), since slabs are
usually subjected to downward loads and the analyst is interested in downward deflections.

o x

y

z
(  )a

x

y

z

(  )b

y

y

z z

x

x

(  )c (  )d

Fig. 1.3 Different orientation of coordinates with right hand rule

For the analysis of circular plates, polar coordinate system shown in Fig. 1.4 may be used advanta-
geously.

�d
�r

dr

Reference axis

z is downward direction

Fig. 1.4 Polar coordinates for circular plate
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1.2 STRESSES ON AN ELEMENT
In cartesian system an element of size dx × dy × dz is selected at a point (x, y), distance z below the
middle surface [Refer Fig. 1.5(a)]. The stresses acting on the element are shown in Fig. 1.5(b), in their
positive senses. Note that the sign convention used is that a stress on positive face in positive direction
or on negative face in negative direction is positive stress. It means the direct tensile stress is positive.
For shear stresses, the positive senses are as shown in Fig. 1.5(b).

x

y
z

dx
dy dz

�z

�x

�y

�zx

�xz

�xy

�yz

�yx

�zy

(a) An element at point (x, y, z) (b) Stresses on the element

Fig. 1.5 Stresses on an element

1.3 TYPES OF THEORIES OF PLATES
The theories that are available for the analysis of plates are

1. Thin plates with small deflections.
2. Thin plates with large deflections and
3. Thick plates.

1.3.1 Theory of Thin Plates with Small Deflections

This theory is satisfactory for plates with thickness less than 1
th

20
 of its lateral dimension and having

deflection less than 1
th

5
 of its thickness. In this theory the following three assumptions are made:

1. Points on the plate lying initially on a normal to the middle surface of the plate remain on the
normal to the middle surface of the plate even after bending.

2. The normal stresses in the direction transversal to the plate can be neglected i.e. Take σz, τxz,
τyz = 0.

3. There is no deformation in the middle surface of the plate. This plane remains neutral during
bending.

Assumption 1 means shear deformations are neglected. This assumption is generally satisfactory, but
in some cases e.g. in case of holes in the plate, the effect of shear becomes considerable and hence
corrections to the theory of thin plates are to be applied.

Assumption 2 is valid for thin plates, since the stresses are zero in z-direction at top and bottom of
plates, as they are free edges. There may be small variation inside the plate at any depth z, but it is
negligible.
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Assumption 3 holds good if the plate is thin. However in actual structure when the plate bends, small
forces may develop in the middle surface. This inplane stress in the middle of plate reduces the bending
moment at any other point. Hence neglecting this force is an assumption on safer side.

1.3.2 Theory of Thin Plates with Large Deflections
If the deflections are not small in comparison with its thickness, strains and stresses are introduced in
the middle surface of the plate. These stresses are to be considered in deriving equilibrium equations.
Inclusion of these stresses results into non-linear equations. This is called geometric nonlinearity. When
this non-linearity is considered, the solution becomes more complicated.

1.3.3 Theory of Thick Plates
The first two theories discussed above become unrealistic in the case of plates of larger thicknesses,
especially in the case of highly concentrated loads. In such cases thick plate theory should be used. This
theory considers analysis as a three dimensional problem of elasticity. The analysis becomes lengthy
and more complicated. Till today the problems are solved only for a few particular cases.

QUESTIONS

1. Draw an element of plate in Cartesian system and show the stresses acting on it in their positive senses. Make
the sign convention clear.

2. Briefly write on the following theories of plates to bring out differences among them.
(a) Thin plates with small deflections.
(b) Thin plates with large deflections.
(c) Thick plates.



Chapter

2
Pure Bending of Plates

As the title suggests, in this theory stress resultants produced due to bending moments only are consid-
ered. In other words, deformation of the membrane due to external loads is ignored. Naturally, in this
type of bending, middle surface remains neutral surface. In this chapter, some of the properties of bent
surface are discussed and expressions are derived for stresses and moments in terms of single unknown
deflection ‘w’.

2.1 SLOPE IN SLIGHTLY BENT PLATE
Figure 2.1(a) shows the plan view of an element and Fig. 2.1(b) shows sectional view of slightly bent
plate.

x

nm

y

dx
(x, y)

dy

o

a

a�

�

Fig. 2.1 (a) Plan view of element

m

middle surface
before deformation

middle surface
after deformation

w w + dw

n

�x

Fig. 2.1 (b) Sectional view of element
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Consider an element of size dx × dy  at point (x, y) in the middle surface of the plate. Figure 2.1(b)
shows the middle surface of the plate cut by plane mn parallel to xz plane. Then,

Slope along x-axis
∂= q =
∂x
w

x
...eqn. 2.1

Similarly if a plane parallel to yz plane is considered,

Slope along y-axis
∂= q =
∂y
w

y
...eqn. 2.2

Let aa′ make an angle α with x-axis (Refer Fig. 2.1(a)). The difference between the deflections at
a and a′ is due to slopes in x and y directions. Let it be ‘dw’.
Then, dw = θx dx + θy dy

       
∂ ∂= +
∂ ∂
w w

dx dy
x y ...eqn. 2.3

Slope along aa′ which is in ‘n’ direction is given by

  
∂ ∂= +

∂ ∂ ∂ ∂
dw w dx w dy

n x n y dn

            cos sin .
∂ ∂= a + a
∂ ∂
w w

x y ...eqn. 2.4

Let the maximum slope be at an angle α to x-axis. Hence

   
1

0
a=a

∂ Ê ˆ =Á ˜Ë ¯∂a
dw

dn

( )1 1sin cos 0
w w

x y

∂ ∂- a + a =
∂ ∂

or                       1tan
∂ ∂a =
∂ ∂

w y

w x ...eqn. 2.5

Putting eqn. 2.4 to zero, we get the direction of zero slope. Let it be α2. Then

           2 20 cos sin
∂ ∂= a + a
∂ ∂
w w

x y

∴                               2tan
∂ ∂a = -
∂ ∂
w x

w y ...eqn. 2.6

From eqns. 2.5 and 2.6, we get,

1 2tan tan 1.a ◊ a = -
It means the direction of zero slope (ααααα2) and the direction of maximum slope (ααααα1) are at right

angles to each other.
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Expression for Maximum Slope:
The value of maximum slope

1a=a

∂
=
∂
w

n

1 1cos sin
∂ ∂= a + a
∂ ∂
w w

x y

1 1tan cos
∂ ∂Ê ˆ= + ◊ a aÁ ˜∂ ∂Ë ¯

w w

x y

1

1

sec

∂ ∂ ∂ ∂Ê ˆ= +Á ˜∂ ∂ ∂ ∂ aË ¯
w w w y

x y w x

2 2

2
1

1

1 tan

∂ ∂Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
=

∂ ∂ + a

w w

x y

w x

2 2

2

1

1

∂ ∂Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
=

∂ ∂ ∂ ∂Ê ˆ+ Á ˜∂ ∂Ë ¯

w w

x y

w x w y

w x

2 2

2 2

∂ ∂Ê ˆ Ê ˆ ∂+Á ˜ Á ˜Ë ¯∂ ∂Ë ¯ ∂=
∂ ∂ ∂ ∂Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

w w w
x y x

w x w w

x y

2 2∂ ∂Ê ˆ Ê ˆ= +Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
w w

x y
...eqn. 2.7

2.2 CURVATURE OF SLIGHTLY BENT PLATE
The curvature of a bent surface is numerically equal to the rate of change of slope. If the curvature is
considered positive when it is a sagging surface (Refer Fig. 2.2), the curvature in x-direction

2

2

1 ∂ ∂ ∂Ê ˆ= = - = -Á ˜Ë ¯∂ ∂ ∂x

w w

r x x x
...eqn. 2.8

where 
1

xr
 is radius of curvature.
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Similarly, curvature in y-direction
2

2

1
.

∂= = -
∂y

w

r y
...eqn. 2.9

Curvature in any direction
Consider a direction n which makes angle α with x-axis. Then from the definition of curvature,

2

2

1 ∂= -
∂n

w

r n

From eqn. 2.3,   cos sin
∂ ∂ ∂= a + a
∂ ∂ ∂
w w w

n x y

i.e.  cos sin
n x y

∂ ∂ ∂= a + a
∂ ∂ ∂

∴    
2

2

1 ∂ ∂ ∂Ê ˆ= - = - Á ˜Ë ¯∂ ∂∂n

w w

r n nn

    cos sin cos sin
∂ ∂ ∂ ∂Ê ˆ Ê ˆ= - a + a a + aÁ ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

w w

x y x y

2 2 2 2
2 2

2 2
cos sin cos sin sin cos

È ˘∂ ∂ ∂ ∂= - a + a + a a + a ◊ aÍ ˙∂ ∂ ∂ ∂∂ ∂Í ˙Î ˚

w w w w

x y x yx y

Noting that,
2

2

1 ∂= -
∂x

w

r x

and

2

2

1 ∂= -
∂y

w

r y

and taking 
21

,
∂=
∂ ∂xy

w

r x y
 we get

        

2
2 21 1 1 2

cos sin sin cos
∂= a + a - a a
∂ ∂n x y

w

r r r x y

    
1 1 cos2 1 1 cos2 1

sin 2
2 2x y xyr r r

+ a - a= + - a

    1 1 1 1 1 cos2 1
sin 2

2 2x y x y xyr r r r r

aÊ ˆ Ê ˆ= + + - - aÁ ˜ Á ˜Ë ¯ Ë ¯
...eqn. 2.10

Fig. 2.2 Positive sense of curvature

�1

�2
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If ‘t’ is the direction at right angles to ‘n’ direction, the direction ‘t’ is at α + 90° to n-direction. Hence

1

tr
 can be obtained by changing α to α + 90 in eqn. 2.9. Thus

( ) ( )1 1 1 1 1 1 1 1
cos 2 90 sin 2 90

2 2
Ê ˆ Ê ˆ= + + - a + - a +Á ˜ Á ˜Ë ¯ Ë ¯t x y x y xyr r r r r r

         
1 1 1 1 1 1 1

cos2 sin2
2 2
Ê ˆ Ê ˆ= + - - a + aÁ ˜ Á ˜Ë ¯ Ë ¯x y x y xyr r r r r ...eqn. 2.11

Adding eqns. 2.10 and 2.11, we get

1 1 1 1

n t x yr r r r
+ = + ...eqn. 2.12

Hence we can conclude, the sum of curvatures in any two mutually perpendicular directions in
a slightly bent plate is constant.

Twist of the surface w.r.t. n and t directions:
It is given by,

21 ∂ ∂ ∂Ê ˆ= = Á ˜Ë ¯∂ ∂ ∂ ∂nt

w w

r n t n t

Now from eqn. 2.4,

  cos sin
∂ ∂ ∂= a + a
∂ ∂ ∂
w w w

n x y

∴ cos sin
n x y

∂ ∂ ∂= a + a
∂ ∂ ∂

Since t is the direction at right angles to n, we get 
t

∂
∂

 from the above expression by changing α to

α + 90.

i.e.                  ( ) ( )cos 90 sin 90
t x y

∂ ∂ ∂= a + + a +
∂ ∂ ∂

      sin cos
x y

∂ ∂= - a + a
∂ ∂

∴  
1 ∂ ∂Ê ˆ= Á ˜Ë ¯∂ ∂nt

w

r n t

cos sin sin cos
∂ ∂ ∂ ∂Ê ˆ Ê ˆ= a + a - a + aÁ ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

w w

x y x y

2 2 2 2
2 2

2 2
sin cos sin cos cos sin

∂ ∂ ∂ ∂= - a a + a a + a - a
∂ ∂ ∂ ∂∂ ∂

w w w w

x y x yx y
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( )2 21 1 sin 2 1
cos sin

2x y xyr r r

aÊ ˆ= - + a - aÁ ˜Ë ¯

1 1 sin 2 1
cos2

2x y xyr r r

aÊ ˆ= - + aÁ ˜Ë ¯ ...eqn. 2.13

2.3 PRINCIPAL CURVATURE

The two mutually perpendicular directions ‘n’ and ‘t’ with respect to which twist of the surface 
1

0
ntr
= ,

is called the direction of principal curvatures. Hence from eqn. 2.13, we get the direction of principal
curvature ‘α’ as

1
2

tan 2
1 1

xy

x y

r

r r

¥
a = -

Ê ˆ-Á ˜Ë ¯

...eqn. 2.14

It can be shown that in the direction of principal curvatures, the curvature is maximum/minimum.
For this proof, differentiate eqn. 2.10 with respect to α. It gives,

( )1 1 1 1
sin2 2 2cos2 0

2 x y xyr r r

Ê ˆ- - a ¥ - a =Á ˜Ë ¯

i.e.

1
2

tan 2 ,
1 1

xy

x y

r

r r

¥
a = -

Ê ˆ-Á ˜Ë ¯
which is same as eqn. 2.14.

Thus we find the planes of principal curvatures are the planes of extreme curvatures also.

Magnitude of Principal Curvatures
For such planes,

1
2

tan 2
1 1

xy

x y

r

r r

a = -
-

Referring to Fig. 2.3

Fig. 2.3

r x

1 ry

1
�

�

4
rxy
2

1/2

2

2�1

rx

1
ry

1
�

2
rxy

�
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1 2 1 22 2

2 2

1 1 1
2

sin 2  and cos2
1 1 4 1 1 4

xy x y

x y x yxy xy

r r r

r r r rr r

- -
a = a =

È ˘ È ˘Ê ˆ Ê ˆÍ - + ˙ Í - + ˙Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯Î ˚ Î ˚

Substituting these values in eqn. 2.10 and noting this as 
1

1
,

r
 we get

1 2 1 22 21

2 2

11 1 2
1 1 1 1 1 1 1 1

2 2
1 1 4 1 1 4

xyx y

x y x y xy

x y x yxy xy

rr r

r r r r r r

r r r rr r

Ê ˆ-- Á ˜Ë ¯Ê ˆ Ê ˆ= + + - -Á ˜ Á ˜Ë ¯ Ë ¯ È ˘ È ˘Ê ˆ Ê ˆÍ - + ˙ Í - + ˙Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯Î ˚ Î ˚

    

2

2

1 22

2

1 1 1
4

1 1 1 1

2 2
1 1 4

x y xy

x y

x y xy

r r r

r r

r r r

Ê ˆ- +Á ˜Ë ¯Ê ˆ= + +Á ˜Ë ¯ È ˘Ê ˆÍ - + ˙Á ˜Í ˙Ë ¯Î ˚

    

1 22

2

1 1 1 1 1 1 4

2 2x y x y xyr r r r r

È ˘Ê ˆ Ê ˆÍ ˙= + + - +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
...eqn. 2.15(a)

If we take (Ref. Fig. 2.4)

2 1 22

2

1 1

cos2
1 1 4

x y

x y xy

r r

r r r

Ê ˆ- -Á ˜Ë ¯
a =

È ˘Ê ˆÍ - + ˙Á ˜Í ˙Ë ¯Î ˚

and 2 1 22

2

2
sin 2

1 1 4

xy

x y xy

r

r r r

a =
È ˘Ê ˆÍ - + ˙Á ˜Í ˙Ë ¯Î ˚

we get,

1 22

2
2

1 1 1 1 1 1 1 4

2 2x y x y xyr r r r r r

È ˘Ê ˆ Ê ˆÍ ˙= - - - +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
...eqn. 2.15(b)

Fig. 2.4

r x

1 r y

1
�

�

4
r xy
2

1/2

2

2
rxy

rx

1
ry

1
��

2�2
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It may be noted that 2α1 and 2α2 differ by 180° i.e. α1 and α2 differ by 90°.
The equations for principal curvatures are similar to those obtained for finding principal stresses.

Hence Mohr’s circle can be used to determine principal curvatures also. Figure 2.5 shows Mohr’s circle
for principal curvatures.

1
rxy

1
r2

Twist

1
r12�

1
ry

1
rxy

,

1
rx

1
rxy

,

Curvature
1
r

Fig. 2.5 Mohr’s circle for curvatures

2.4 DISPLACEMENT—STRAIN RELATIONS
Let,

u — displacement in x-direction
v — displacement in y-direction and
w — displacement in z-direction.
u,v and w are considered positive when they are in positive directions of the coordinates x, y and z.

v

a
u

a�

v + �u�

�y
dy

v �
�v
�x

dx

u �
�u
�y

dy

u �
�u
�x

dx

�1

�2

d

d�

b�

b

c

c�

Fig. 2.6 Deflected shape of element
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Consider an element of size dx × dy as shown in Fig. 2.6. Note that the original element abcd  is
deflected to the position a′b′c′d′. In the figure a′b′c′d′ is shown such that the deflections increase in the
increasing directions of coordinates. Thus

(u, v) are deflections at a′.

,
u v

u dx v dx
x x

∂ ∂Ê ˆ+ +Á ˜Ë ¯∂ ∂
are deflections at b′.

,
∂ ∂Ê ˆ+ +Á ˜∂ ∂Ë ¯

u v
u dy v dy

y y
are deflections at c′.

∴ Change in length of the element in x-direction .
u u

u dx u dx
x x

∂ ∂= + - =
∂ ∂

∴ Strain in x-direction

Change in length in -direction

Original length in -directionx
x

x
e =

    

u
dx ux

dx x

∂
∂∂= =
∂

Similarly, strain in y-direction

y

v
v dy v

vy

dy y

∂+ ◊ -
∂∂e = =
∂

Shearing strain

1 2g = f + fxy

uv dydx yx
dx dy

∂∂ ◊◊ ∂∂= +

u v

y x

∂ ∂= +
∂ ∂

Thus strains are given by the expressions

x
u

x

∂e =
∂

y
v

y

∂e =
∂

and                    
∂ ∂g = +
∂ ∂xy
u v

y x
...eqn. 2.16
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2.5 STRAINS IN TERMS OF w
Let a point at distance z from middle surface be displaced as shown in Fig. 2.7.

rotated normal

rotated middle surfaceu

z �x�x

Fig. 2.7 Displacement u in terms of w

From the figure, it is clear that

∂= - q = -
∂x
w

u z z
x

Similarly,
∂= - q = -
∂y
w

v z z
y

∴        
2

2

∂ ∂e = = -
∂ ∂x
u w

z
x x

       
2

2

∂ ∂
e = = -

∂ ∂y
v w

z
y y

and xy
u v

y x

∂ ∂g = +
∂ ∂

                 

2 2∂ ∂= - -
∂ ∂ ∂ ∂

w w
z z

x y x y

      
2

2
∂= -
∂ ∂

w
z

x y

Thus,

2

2

∂e = -
∂x

w
z

x

2

2

∂e = -
∂y

w
z

y
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and  
2

2
∂g = -
∂ ∂xy

w
z

x y
...eqn. 2.17

The above expressions for strains εx and εy may be derived considering the
curvatures also.

Referring to Fig. 2.8,

      
Final length Original length

Original lengthx
-e =

          
( )x x

x

r z r

r

+ q - q
=

q

          
2

2

∂
= = -

∂x

z w
z

r x

Similarly
2

2
.

∂
e = -

∂y
w

z
y

2.6 STRAIN-STRESS RELATIONS
Consider the element shown in Fig. 2.9, which is subjected to stresses σx, σy and τxy. In the figure
stresses are shown in their positive senses.

Taking moment equilibrium condition about z-axis passing through A, we get
τxy dy h dx − τyx h dx dy = 0, where h is thickness of plate.

∴ τxy = τyx ...(1)

�y

�y

�x

B

A

�x

D �yx

�xy

C

Fig. 2.9 Stresses on an element

Fig. 2.8 Strain εx from
curvature consideration

�x

rn

z
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From theory of elasticity, we know

( )1e = s - msx x yE
...(2)

and ( )1e = s - msy y xE
...(3)

where E - Young’s modulus
and µ - Poisson’s ratio.

From eqn. 3, ( )1
y y xE

me = m s - ms ...(4)

Adding eqns. (2) and (4), we get

                ( )21
1e + me = - m sx y xE

or  ( )
2 2

2 2 2 21 1

Ê ˆ∂ ∂s = e + me = - + mÁ ˜- m - m ∂ ∂Ë ¯x x y
E Ez w w

x y

Similarly,  
2 2

2 2 21

Ê ˆ∂ ∂s = - m +Á ˜- m ∂l ∂Ë ¯y
Ez w w

y

xy xyGt = g

where G = Modulus of rigidity ( )2 1
=

+ m
E

∴ ( )2 1
t = g

+ mxy xy
E

( )
2

2
2 1

E w
z

x y

∂= -
+ m ∂ ∂

( )
2

1

Ez w

x y

∂= - ◊
+ m ∂ ∂

( ) 2

2

1

1

- m ∂= -
∂ ∂- m

Ez w

x y

Thus,

   
2 2

2 2 21

Ê ˆ∂ ∂s = - + mÁ ˜- m ∂ ∂Ë ¯x
Ez w w

x y

   
2 2

2 2 21

Ê ˆ∂ ∂s = - m +Á ˜- m ∂ ∂Ë ¯y
Ez w w

x y
...eqn. 2.18

and   ( )
2

2
1

1

∂t = - - m
∂ ∂- mxy

Ez w

x y
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2.7 EXPRESSIONS FOR MOMENTS
Let,

Mx = Moment per unit length acting in x-direction.
My = Moment per unit length acting in y-direction.

and Mxy = Twisting moment per unit length w.r.t. x − y directions.

Sign convention used: Positive forces in positive side of z-coordinate produce +ve moments.
It amounts to taking sagging bending moments as positive moments. These moments may be repre-

sented by any one of the way shown in Fig. 2.10.
Note carefully:

Mxy is moment per unit length on face x in y-direction.
Myx is moment per unit length on face y in x-direction.

Myx

Myx

My

My

MxyMx Mx

(  )a

Mxy

Myx

Myx

My

My

Mxy

Mx

Mx

(  )b

Mxy
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Myx

Myx

My

My

Mxy

Mx

Mx

(  )c

Mxy

Fig. 2.10 Sign convention for moments

The twisting moments are positive when they are as shown in Fig. 2.10 (Positive shear acting in
positive direction of z produces positive twisting moment).

Now,
2

2

1
h

x z
h

M z dz
-

= s ¥ ¥Ú

      

2 2 2

2 2 2
2 1-

Ê ˆ∂ ∂= - + mÁ ˜- m ∂ ∂Ë ¯Ú
h

h

Ez w w
z dz

x y

22 2 3

2 2 2
231 -

Ê ˆ È ˘∂ ∂= - + m Í ˙Á ˜ Î ˚- m ∂ ∂Ë ¯

h

h

E w w z

x y

( )
3 2 2

2 2212 1

Ê ˆ∂ ∂
= - + mÁ ˜∂ ∂Ë ¯- m

Eh w w

x y

2 2

2 2

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯
w w

D
x y

where ( )
3

212 1
=

- m
Eh

D  is flexural rigidity of plate.

Similarly  
2 2

2 2

Ê ˆ∂ ∂= - m +Á ˜∂ ∂Ë ¯y
w w

M D
x y
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Now,

2

2

1
h

xy xy
h

M z dz
-

= t ¥ ¥Ú

( )2 2

2
2

1

1-

- - m ∂=
∂ ∂- mÚ

h

h

Ez w
z dz

x y

( )
( )
3 2

2

1

12 1

- m ∂
= -

∂ ∂- m

Eh w

x y

( )
2

1 .
∂= - - m
∂ ∂

w
D

x y

Thus,

2 2

2 2

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯x
w w

M D
x y

2 2

2 2

Ê ˆ∂ ∂= - m +Á ˜∂ ∂Ë ¯y
w w

M D
x y

...eqn. 2.19

( )
2

1 .
∂= - - m
∂ ∂xy

w
M D

x y

2.8 MOMENT IN ANY DIRECTION
Let ‘n’ be the direction making angle α in clockwise direction to x-direction as shown in Fig. 2.11.
Consider the element of size dx × dy and thickness h. Now we have to find expression for moment in
n-direction in terms of known moments Mx, My and Mxy.

0 x

dx

dy�

n

y

Fig. 2.11 Element considered
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Now consider the stresses acting on the triangular element as shown in Fig. 2.12.

dx

�y

�n

�x

�xy

� nt

dy

�

� 90 �
�

dt

y

x

Fig. 2.12 Triangular element with stresses on its sides

Noting that τxy = τyx,

∑ Forces in n direction = 0, gives

σn h dt = σx h dy cos α + σy h dx sin α + τxy h dy sin α + τxy h dx cos α
Throughout dividing by h.dt and noting that

sin  and cos , we get
dx dy

dt dt
= a = a

2 2cos sin cos sin sin cosn x y xy xys = s ◊ a + s a + t a a + t a ◊ a

     2 2cos sin 2 sin cosx y xy= s a + s a + t a ◊ a

  
1 cos2 1 cos2

sin 2
2 2x y xy

+ a - aÊ ˆ Ê ˆ= s + s + t aÁ ˜ Á ˜Ë ¯ Ë ¯

  cos2 sin 2
2 2

x y x y
xy

s + s s - s
= + a + t a

From equation of equilibrium

                   ∑Ft = 0, we get

              sin cosnt x yhdt hdy hdxt = -s a + s a

   sin cosxy xyhdx hdy-t a + t a

∴                              ( )2 2cos sin sin cos cos sinnt x y xyt = -s a a + s a ◊ a + t a - a

sin 2 cos2
2

x y
xy

-s + s
= a + t a
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∴
2

2

1
h

n n
h

M dz z
-

= s ¥ ¥ ¥Ú

2

2

cos2 sin 2
2 2

h
x y x y

xy
h

z dz
-

s + s s - sÊ ˆ
= + a + t aÁ ˜Ë ¯Ú

cos2 sin 2
2 2

x y x y
xy

M M M M
M

+ -
= + a + a ...eqn. 2.20

Similarly,                 

2

2

1
h

nt xy
h

M dz z
-

= t ¥ ¥ ¥Ú

sin 2 cos2
2

x y
xy

M M
M

- +
= a + a ...eqn. 2.21

2.9 PRINCIPAL MOMENTS
 The planes on which twisting moment is zero are known as principal planes of moment. From eqn.
2.21, if α1 is the direction of principal planes, we get

    1 10 sin 2 cos2
2

- +
= a + ax y

xy

M M
M

i.e.           1

2
tan 2

xy

x y

M

M M
a =

- ...eqn. 2.22

It can be easily proved that moments on principal planes have extreme values. For moment Mn to
have extreme value, necessary condition is,

0nM

d ¢a=a

∂
=

a

i.e. ( )2sin 2 2cos2 0
2

x y
xy

M M
M

-
¢ ¢- a + a =

i.e.
2

tan 2 xy

x y

M

M M
¢a =

-
 which is similar to eqn. 2.22.

Thus α1 = α′ i.e. the moments on principal planes are extreme values. It can be shown that the
magnitude of principal moments are

1 22
2

1,2 2 2
x y x y

xy

M M M M
M M

È ˘+ -Ê ˆÍ ˙= +Á ˜Ë ¯Í ˙Î ˚
±
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The expressions are similar to the expressions for principal stresses. Hence for moments also Mohr’s
circle can be drawn. Figure 2.13 shows Mohr’s circle for moments.

Twisting moment
Mxy, max

Mxy, max

2�1

(M , M )x xy

(M , M )y xy

M1
M2

Moment0

Fig. 2.13 Mohr’s circle for moments

QUESTIONS

1. Prove that in a slightly bent plate under pure bending, the directions of maximum slope and zero slope are at
right angles to each other. Find the expression for maximum slope.

2. Prove that the sum of curvatures in any two mutually perpendicular directions in a slightly bent plate is
constant.

3. Derive the expression for curvature in a slightly bent plate in any direction under pure  moment and then
determine the expressions for
(a) principal curvature direction.
(b) values of principal curvatures.

4. Show that planes of principal curvatures are the planes of extreme curvatures also.
5. Derive the expressions for strains in a plate in terms of single displacement ‘w’.
6. State the strain-stress relations and strain-displacement relations in terms of single displacement ‘w’. Hence

establish the expressions for stresses and moments in terms of ‘w’.
7. Derive the expression for moment in any direction and then determine:

(a) Principal planes for moment.
(b) Value of principal moments.

8. At a point in a plate, the moments are as shown below:
Mx = 90 kn-m      My = 50 kn-m     Mxy = 30 kn-m
Determine
(a) Direction of principal planes.
(b) Maximum/Minimum moments.
(c) Maximum twisting moment and its direction.



Small Deflections of Laterally
Loaded Plates

Plates are usually subjected to lateral loads and bend in both directions. The bending moment and shear
forces vary from point to point. Hence, the moments and shear forces on negative face and positive face
of an element will not be same. However, the element will be in equilibrium under the action of these
stress resultants and the load on it. In this chapter, the equilibrium equation is derived and the boundary
conditions to be considered are discussed.

3.1 STRESS RESULTANTS ON A TYPICAL PLATE ELEMENT
Figure 3.1 shows a typical element and the stress resultant on it. Stress resultants on negative faces (at
x and y sections) are noted without superscripts while the stress resultants on positive faces (at x + dx
and y + dy) are shown with ‘+’ sign as superscript.

0
a

b

x
y

dx

dy

y

x

Fig. 3.1 (a) Position of element

Consider the moments in x-direction.
on negative face moment = Mx

on positive face moment = Mx
+

If the rate of change of moment in x-direction is ,xM

x

∂
∂

 then

x
x x

M
M M dx

x
+ ∂
= +

∂

Chapter

3
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Myx

My

Mx

Mxy
�

Myx

�

Mx

�

My

�Mxy

Qx

Qy

Qy

�

Qx

�

Fig. 3.1 (b) Moments on element (c) Vertical shears on element

Similarly the relations of stress resultants on positive faces with negative faces may be written. Thus,

yx
x x y y

xy yx
xy xy yx yx

yx
x x y y

MM
M M dx M M dy

x y
M M

M M dx M M dy
x y

QQ
Q Q dx Q Q dy

x y

+ +

+ +

+ +

∂ ¸∂
= + = + Ô∂ ∂ Ô

∂ ∂ Ô
= + = + ˝∂ ∂ Ô

∂ Ô∂
= + = + Ô∂ ∂ ˛

...eqn. 3.1

Note that all stress resultants are per unit length.
Apart from these stress resultants, load of intensity q per unit area is acting on the element in the

downward direction. Hence, total downward load on the element.
= q dx dy ...eqn. 3.2

3.2 EQUATIONS OF EQUILIBRIUM
Three independent equations of equilibrium can be written for the element—one considering the forces
in z-direction and two moment equilibrium for the moments in x-direction and y-direction

Consider ∑Fz = 0. It gives
Qx

+ dy − Qx dy + Qy
+ dx − Qy dy + q dx dy = 0

i.e. 0
yx

x x y y

QQ
Q dx dy Q dy Q dy dx Q dy q dx dy

x y

∂Ê ˆ∂Ê ˆ+ - + + - + =Á ˜ Á ˜Ë ¯∂ ∂Ë ¯

Simplifying and then dividing throughout by dx dy, we get

0
yx

QQ
q

x y

∂∂
+ + =

∂ ∂ ...eqn. 3.3

Equilibrium equation,
∑Mx = 0, gives
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0
2 2

+ + +- + - - - =x x yx yx x x
dx dx

M dy M dy M dx M dx Q dy Q dy

∂Ê ˆ∂Ê ˆ+ - + + -Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
yxx

x x yx yx

MM
M dx dy M dy M dy dx M dx

x y

0
2 2

∂Ê ˆ- + ◊ - =Á ˜Ë ¯∂
x

x x
Q dx dx

Q dx dy Q dy
x

Simplifying and neglecting small quantity of higher order, we get

0yxx
x

MM
Q

x y

∂∂
+ - =

∂ ∂

i.e.         
yxx

x

MM
Q

x y

∂∂
+ =

∂ ∂ ...eqn. 3.4

Similarly moment equilibrium in y-direction, gives

        
xy y

y

M M
Q

x y

∂ ∂
+ =

∂ ∂ ...eqn. 3.5

Substituting the values of Qx and Qy as shown in Eqns. 3.4 and 3.5 in equation 3.3, we get

2 2 22

2 2
0

yx xy yx
M M MM

q
x y x yx y

∂ ∂ ∂∂
+ + + + =

∂ ∂ ∂ ∂∂ ∂

i.e.  

2 22

2
2

xy yx
M MM

q
x x y y

∂ ∂∂
+ + = -

∂ ∂ ∂ ∂
But we know (Refer eqn. 2.20)

2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

2 2

2 2y
w w

M D
x y

Ê ˆ∂ ∂= - m +Á ˜∂ ∂Ë ¯

and ( )
2

1xy
w

M D
x y

∂= - - m
∂ ∂

Hence, equation of equilibrium is

( )
4 4 4 4 4

4 2 2 2 2 2 2 2
2 1

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂- + m - - m - m + = -Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
w w w w w

D D D q
x x y x y x y y

i.e.
4 4 4

4 2 2 4
2 .

w w w
D q

x x y y

Ê ˆ∂ ∂ ∂- + + = -Á ˜∂ ∂ ∂ ∂Ë ¯
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i.e.
4 4 4

4 2 2 4
2

w w w q

Dx x y y

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

i.e.

2 2 2 2

2 2 2 2

w w q

Dx y x y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂+ + =Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

Denoting 
2 2

2 2x y

∂ ∂+
∂ ∂

 by ∇ we get

( )2 2 q
w

D
— — =

or
4 q
w

D
— = ...eqn. 3.6

Equation 3.6 is known as Equation of Plates or Lagrange Equation for Plates.

3.3 EXPRESSIONS FOR VERTICAL SHEARS
From equation 3.4,

  
xyx

x

MM
Q

x y

∂∂
= +

∂ ∂

But  
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

and ( )
2

1xy
w

M D
x y

∂= - - m
∂ ∂

∴   ( )
3 3 3

3 2 2
1x

w w w
Q D D

x x y x y

Ê ˆ∂ ∂ ∂= - + m - - mÁ ˜∂ ∂ ∂ ∂ ∂Ë ¯

      
3 3

3 2

w w
D

x x y

Ê ˆ∂ ∂= - +Á ˜∂ ∂ ∂Ë ¯

      
2 2

2 2

w w
D

x x y

Ê ˆ∂ ∂ ∂= - + mÁ ˜∂ ∂ ∂Ë ¯

      ( )2D w
x

∂= - —
∂

Similarly

( )2
yQ D w

y

∂= - —
∂
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Thus ( )2
xQ D w

x

∂= - —
∂

( )2
yQ D w

y

∂= - —
∂ ...eqn. 3.7

3.4 BOUNDARY CONDITIONS
(a) Fixed Edge: If the edge x = a is fixed (Ref. Fig. 3.2)

0 and 0
w

w
x

∂
= =

∂ ...eqn. 3.8

(b) If edge x = a is simply supported.
0x aw = =

and 0x x a
M

=
=

i.e.

2 2

2 2
0

w w
D

x y

Ê ˆ∂ ∂- + m =Á ˜∂ ∂Ë ¯

But along
2

2
, 0,

w
x a

y

∂
= =

∂
since the edge is supported throughout.

Hence, the boundary condition is

     
2

2
0.

x a

w

x =

∂ =
∂

Thus, the boundary conditions are
2

2
0 and 0x a

w
w

x
=

∂= =
∂ ...eqn. 3.9

(c) Free edge at x = a
If the edge x = a is free,

Mx = 0, Mxy = 0 and Qx = 0.
The above three boundary conditions were expressed by Poisson. But Kelvin felt that there is some-

thing wrong, since when at all other edges two conditions are found, how there can be three edge
conditions in this case.

Kelvin and Tait pointed out that the last two conditions are not independent. They can be combined
to give a single realistic condition.

Referring to Figure 3.2, twisting moment on an elemental length dy is Mxy dy. This moment may be
replaced by two vertical shears of magnitude Mxy separated by dy. This change will not alter the be-
haviour of the plate. Kelvin and Tail pointed out that the actual boundary condition is at any point on
free edge, vertical shear plus vertical shear due to replacement of twisting moment must be zero. Now,
vertical force at any point due to Mxy

xy xyM M+= -
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      ,  downward.xy xy
xy xy

M M
M dy M dy

y y

∂ ∂
= + - =

∂ ∂

Mxy
�

Mxy
�

Mxy

Mxy

Fig. 3.2 Contribution of twisting moment to vertical shear

∴ Total vertical shear

xy
x x

M
V dy Q dy dy

y

∂
= +

∂

∴   
xy

x x

M
V Q

y

∂
= +

∂

( )
2 2 3

2 2 2
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w w w
D D

x x y x y

È ˘Ê ˆ∂ ∂ ∂ ∂= - + - - mÍ ˙Á ˜∂ ∂ ∂ ∂ ∂Ë ¯Í ˙Î ˚

( )
3 3 3

3 2 2
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w w w
D D

x x y x y

È ˘∂ ∂ ∂= - + - - mÍ ˙
∂ ∂ ∂ ∂ ∂Í ˙Î ˚

( )
3 3

3 2
2

w w
D

x x y

È ˘∂ ∂= - + - mÍ ˙
∂ ∂ ∂Í ˙Î ˚

The real boundary condition is
Vx = 0

Thus, at free edge the boundary conditions are, 0  and  0x xx a x a
M V

= =
= = ...eqn. 3.10

(d) If edge x = a is elastically supported.
Figure 3.4 shows this case, in which edge x = a is supported elastically by a beam. Let flexural

rigidity of beam be B and torsional rigidity be G.
We know, for the beam,

4

4
Load intensity

w
B

y

∂ =
∂
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One boundary condition is,
 deflection of beam = deflection of plate

            

4

4 x a

x a

w
B V

y
=

=

∂ =
∂

( )
3 3

3 2
2

x a

w w
D

x x y =

È ˘∂ ∂
= - + - mÍ ˙

∂ ∂ ∂Í ˙Î ˚
The second boundary condition may be written by considering the torsional rotation of elemental

length of beam. Referring to Figure 3.3,
Let MTb be twisting moment in the beam. Twisting of the

beam is due to moment x x a
M

=  in the plate. From moment

equilibrium condition, we get,

Tb Tb xM dy M dy M dy+ - =

i.e.
∂

+ + =
∂

Tb
Tb Tb

M
M dy dy M dy Mxdy

y

             
Tb

x
M

M
y

∂
= -

∂

  
2 2 2

2 2
,

w w w
G D

y x y x y

Ê ˆ Ê ˆ∂ ∂ ∂ ∂◊ = + mÁ ˜ Á ˜∂ ∂ ∂Ë ¯ ∂ ∂Ë ¯

since w is same for both beam and plate.

i.e.

3 2 2

2 2

w w w
G D

x y x y

Ê ˆ∂ ∂ ∂= + mÁ ˜∂ ∂ ∂ ∂Ë ¯

Thus, for plate with elastic support on beam, the boundary
conditions are,

( )
4 3 3

4 3 2
2

w w w
B

y x x y

∂ ∂ ∂
= + - m

∂ ∂ ∂ ∂

and
3 3 2

2 2 2

w w w
G D

x y x y

Ê ˆ∂ ∂ ∂= + mÁ ˜∂ ∂ ∂ ∂Ë ¯

...eqn. 3.11

3.5 CORNER REACTION
Consider the corner x = a and y = b in which the edges x = a and y = b are discontinuous. If we resort
to replacing twisting moment in the last element along the edge x = a, we find there is an upward force

of ,
xyM

y

∂
∂

 corner. Similarly if we replace twisting moment in the last element along y = b, we find there

Fig. 3.3 Torsional rotation of edge beam
at x = a

MTb

Mx

dy

MTb

+
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is an upward force of ,
yxM

x

∂
∂

 corner. Thus, at corner x = a, y = b, there is net upward force of 
xyM

y

∂
∂

corner plus yxM

x

∂
∂

corner. Since Mxy = Myx, we can conclude at the corner there is net upward force of

2 .
∂
∂

xyM

x
 Hence, at discontinuous corners, lifting takes place. To take care of this phenomenon, in

R.C.C. slabs corner reinforcements are provided.

�Mxy

�y
, corner

�Myxz

�x
, corner

2M , cornerxy

x

y

b

a

Fig. 3.4 Corner reaction

QUESTIONS

1. Derive the biharmonic equation for slightly bent thin plate.
2. Discuss the boundary conditions at free edge.
3. Explain why there is tendency of uplift at corner if two adjacent edges of a plate are discontinuous.



Fourier Series of Loadings

It is difficult to solve the biharmonic equation of the plate, if the loading is considered as it is. However
satisfactory solution can be obtained easily if loading is expressed in a series of equivalent sinusoidal
loading form. Such loading is called Fourier series loading. Though the loading is expressed in the
infinite series, first term itself gives 95 percentage of deflection and 90 percentage of moment. Hence,
Fourier series solutions are used in the analysis of plates and shells.

4.1 FOURIER SERIES OF LOADS ON BEAMS
A given loading is considered as a sum of series of sinusoidal loadings. The peak values of sinusoidal
loadings are so selected that if a number of such terms are added original loading is obtained. The
Fourier equivalent terms for a given loading are given by,

(  ) Given loada

(  ) Ist termb

(  ) IInd termc

(  ) IIIrd termd

(  ) IVth terme

( ) Sum of I, II, III and IVth termsf

Fig. 4.1

1

( ) sinm
m x

f x a
L

• p=Â  where

  2
( )sin .m

m x
a f x dx

L L

p= Ú
...eqn. 4.1

Chapter

4
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where L is span of the beam.
Figure 4.1 shows the addition of such loadings to get original loading f(x).
To get reasonably good loading, it may be necessary to take 20–25 terms in Fourier series. But

deflections can be obtained reasonably well (within 5 percent) with the first term itself. Similarly
bending moments can be obtained reasonably well with 3 terms. Hence, this approach has been suc-
cessfully used for the analysis of plates.

4.2 FOURIER SERIES FOR UDL ON BEAMS
Expression for equivalent Fourier series is derived in this article for uniformly distributed load acting
on a beam of span L (Refer Figure 4.2).

q /unit length0

L

Fig. 4.2 UDL over entire span

In general for any loading q(x), Fourier equivalent is

1

( ) sinm
m

m x
q x a

L

•

=

p= Â

where   
0

2
( )sin

L

m
m x

a q x dx
L L

p= Ú ...eqn. 4.2

In case of uniformly distributed load,
q(x) = q0

∴ 0
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2
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m
m x

a q dx
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    0
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L m L
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    [ ]02
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q
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m
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q
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=

p
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1,3, ...

4
( ) sin

m

q m x
q x

m L

•

=

p
\ =

pÂ ...eqn. (4.3)
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4.3 FOURIER EQUIVALENT FOR UDL OVER A SMALL LENGTH
Let load intensity be q over a length u with its centre of gravity at ξ acting on a beam of length L as
shown in Figure 4.3. It is required to find Fourier equivalent load for this.

In general

1

( ) sinm
m

m x
q x a

L

•

=

p= Â

�

u

L

q /unit length0

Fig. 4.3 UDL over a small length

where   
0

2
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m
m x

a q x dx
L L

p= Ú
In this case,

                ( ) 0 for 0 to 
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0

1

4
( ) sin sin sin

2m

q m m u m x
q x

m L L L

•

=

px p p=
pÂ ...eqn. 4.4

4.4 FOURIER EQUIVALENT FOR A CONCENTRATED LOAD
Figure 4.4 shows a concentrated load P at distance ξ from left support acting on a beam of span L.

P

�

L

Fig. 4.4 Concentrated Load P

Its Fourier equivalent may be obtained from expression 4.4 by treating it as the case in which total
load remains the same while u tends to zero. Thus, we have to substitute

P = q0u

and u → 0.

As 0, sin
2 2

m u m u
u

L L

p p
Æ =

∴
0

1

4
( ) sin sin

2m

q m m u m x
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m L L L
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px p p=
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i.e.
1

2
( ) sin sin

m

P m m x
q x

L L L
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=

px p= ◊Â ...eqn. 4.7

4.5 FOURIER EQUIVALENT FOR HYDROSTATIC LOAD
Figure 4.5 shows hydrostatic load varying from 0 intensity at x = 0 to q0 at x = L

x
L

q
q0

L

x

Fig. 4.5 Hydrostatic Load on a beam
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Its Fourier equivalent is
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4.6 FOURIER EQUIVALENT FOR TRIANGULAR LOAD WITH PEAK VALUE AT
MID-SPAN

This type of loading is shown in Fig. 4.6.

x
L

2q0

L

x

q0

Fig. 4.6 Triangular load with peak value at mid span

The general form of Fourier expression is ( ) sinm
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4.7 DOUBLE FOURIER SERIES EXPRESSIONS FOR LOADS
The loads acting on a plate of size a × b (Refer Fig. 4.7) are to be expressed in Fourier series involving
sine functions in x as well as in y directions.

It is required to find
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4.8 DOUBLE FOURIER FORM FOR UDL
For uniformly distributed load,

q(x, y) = q0

∴                  0
0 0

4
sin sin

a b

mn
m x n y
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Fig. 4.7 Typical plate of size a × b.

0 a
x

y

b



38 THEORY OF PLATES AND SHELLS
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4.9 DOUBLE FOURIER FORM FOR UDL OVER SMALL AREA
Figure 4.8 shows a plate of size a × b subject to udl q0 over a small area u × v with its centre of gravity
at (ξ, η). Now, it is required to find Fourier equivalent for this load.
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Fig. 4.8 UDL over a small area

For this load,
q(x, y) = 0 for x = 0 to ξ − u/2 and for x = ξ + u/2 to a

= 0 for y = 0 to η − v/2 and for y = η + v/2 to b

= q0 for x = ξ − u/2 to ξ + u/2 and y = η − v/2 to η + v/2.
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4.10 DOUBLE FOURIER FORM FOR CONCENTRATED LOAD
Let P be the concentrated load acting at (ξ, η) on plate of size a × b as shown in Fig. 4.9.

P

�

a

b �

0 x

y

Fig. 4.9 Concentrated Load P at (ξ, η)

Double Fourier expression for this load can be derived from eqn. 4.11 by letting

0P q uv=
while letting u and v to tend to zero.

Since, u and v tend to zero,
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4.11 DOUBLE FOURIER EQUIVALENT FOR HYDROSTATIC LOAD
Let loading vary linearly from zero to q0 in x-direction and be constant in y-direction (Refer Fig. 4.10).
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Fig. 4.10 Hydrostatic load on plate
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4.12 DOUBLE FOURIER EQUIVALENT FOR TRIANGULAR LOAD WITH PEAK
VALUE AT MID-SPAN

Figure 4.11 shows the loading.
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Fig. 4.11 Triangular load with peak value at mid-span
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QUESTIONS

1. Derive single Fourier series equivalent for the following type of loads on beam of span L:
(a) Uniformly distributed load over entire span.
(b) Uniformly distributed load over a small length u with its centre of gravity at x = ξ.
(c) Concentrated load P at x = ξ.
(d) Hydrostatic load of maximum intensity q0 at x = L and zero intensity at x = 0.
(e) Triangular load of intensity q0 at x = L/2.

2. Derive double Fourier series expressions for the following loads:
(a) Uniformly distributed load over entire plate.
(b) Concentrated load P at (ξ, η).



Navier’s Solution for
Rectangular Plates

A French engineer Navier presented a plate theory as back as in 1820. His theory holds good only for
rectangular plates, simply supported along all the four edges. His paper was the beginning of looking
for trigonometric series solutions for the analysis of plates. Navier’s method is explained in this chapter
for a simply supported rectangular plate subject to uniformly distributed load over entire plate. It is then
extended for the plates subject to any other load.

5.1 NAVIER SOLUTION FOR RECTANGULAR PLATE SUBJECTED TO UDL
The uniformly distributed load q0 may be expressed in its equivalent Fourier series load as,

0
2

1,3,... 1,3,...

16
( , ) sin sin .

m n

q m x n y
q x y

a bmn

• •

= =

p p= ◊
p

Â Â
In this problem, the solution for w should satisfy the equation,

  
4 4 4

4
4 2 2 4

. . 2
q w w w q

w i e
D Dx x y y

∂ ∂ ∂
— = + + =

∂ ∂ ∂ ∂ ...eqn. 5.1

and the boundary conditions
w = 0 at x = 0 and x = a
w = 0 at y = 0 and y = b

Mx = 0 at x = 0 and x = a, and
My = 0 at y = 0 and y = b.

Hence, let       
1 1

sin sinmn
m n

m x n y
w C

a b

• •

= =

p p= ◊ÂÂ ...eqn. 5.2

This form of deflection w satisfies all boundary conditions. But it has to satisfy the plate equation
also. Now,

  
4 4 4

4 4
1 1

sin sinmn
m n

w m m x n y
C

a bx a

• •

= =

∂ p p p
= ◊

∂
ÂÂ

4 2 2 2 2

2 2 2 2
1 1

2 2 sin sinmn
m n

w m n m x n y
C

a bx y a b

• •

= =

∂ p p p p
= ◊ ◊

∂ ∂
Â Â

Chapter
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and
4 4 4

4 4
1 1

sin sinmn
m n

w n m x n y
C

a by b

• •

= =

∂ p p p= ◊
∂

ÂÂ
Hence, if equivalent Fourier loading is considered, the plate equation reduces to

4 4 2 2 4 4 4

4 2 2 4
1 1

2
sin sinmn

m n

m m n n m x n y
C

a ba a b b

• •

= =

È ˘p p p p p+ + ◊Í ˙
Î ˚

Â Â

0
2

1, 3, ... 1,3,...

161
sin sin

m n

q m x n y

D a bmn

• •

= =

p p= ◊
p

Â Â
Comparing term by term, we get

Cmn = 0 for even values of m or n.

For odd values of m and n, we get

4 4 2 2 4 4 4
0

4 2 2 4 2

162
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qm m n n
C

a a b b mn D

È ˘p p p
+ + =Í ˙

pÎ ˚

i.e.
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4 2 2 0
4 2 4 2

16
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qa n a
C m m n

a b b mn D

È ˘p
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pÎ ˚

∴                
4

0
6 22

2 2
2

16 1
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q a
C

mn D a
m n

b

=
p Ê ˆ

+Á ˜Ë ¯

∴
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0
6 221,3,... 1,3,... 2 2

2

16 1 1
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m n

q a m x n y
w

mn a bD a
m n

b

• •

= =

p p= ◊
p Ê ˆ

+Á ˜Ë ¯

Â Â ...eqn. 5.3

∴                 
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯
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16 1
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• •
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Ï ¸p p- + mÌ ˝
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Â Â

i.e.               

2
2 2
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0
4 221,3,... 1,3,... 2 2
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16 1
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a
m n

q a m x n ybM
mn a ba

m n
b

• •
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+ m p p= ◊
p Ê ˆ

+Á ˜Ë ¯

Â Â ...eqn. 5.4

Similarly,
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2 2

2 2
0
4 221,3,.. 1,3,... 2 2

2

16 1
sin siny
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a
m n

q a n x n ybM
mn a ba

m n
b

• •

= =

m + p p= ◊
p Ê ˆ

+Á ˜Ë ¯

Â Â ...eqn. 5.5
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Thus, expressions for all other stress resultants (Mxy, Qx, Qy, Vx, etc.) may be assembled easily.
For square plate a = b,

 
( )

4
0

6 22 21,3,... 1,3,...

16 1 1
sin sin

m n

q a m x n y
w

mn a aD m n

• •

= =

p p
=

p +
Â Â ...eqn. 5.6

                   
2 2 2

0
4 2 2 2

1,3,... 1,3,...

16 1
sin sin

( )
x

m n

q a m n m x n y
M

mn a am n

• •

= =

+ m p p= ◊
p +

Â Â ...eqn. 5.7

                   
2 2 2

0
4 2 2 2

1,3,... 1,3,...

16 1
sin sin

( )
y

m n

q a m n m x n y
M

mn a am n

• •

= =

m + p p= ◊
p +

Â Â ...eqn. 4.8

               ( )
4

0
centre 6 22 21,3,... 1,3,...

16 1 1
sin sin

2 2m n

q a m n
w

mnD m n

• •

= =

p p
=

p +
Â Â

  

4
0

6 2 2 2 2 2 2 2 2

16 1 1 1 1 1
....

3 31 1(1 1) 3 1(3 1) 1 3(1 3 ) (3 3 )

q a

D

È ˘= - - + + -Í ˙¥p ¥ + ¥ + ¥ + +Î ˚

  
4

0
6

16 1 1 1 1
....

4 3 100 3 100 9 324

q a

D

È ˘= - - + -Í ˙¥ ¥ ¥Î ˚p

          
4

0
centre, exact 0.00406

q a
w

D
=

The first term gives 
4 4

0 0
centre 6

16 1
0.0041606

4

q a q a
w

D D
= ¥ =
p

Thus, first term gives 0.0041606
100

0.00406
¥ = 102.48 percent of total deflection

In other words, first term gives only 2.48% erroneous result and it is on safer side.
Consider moment at centre of square plate taking µ = 0.

   ( )
2 2

0
4 22 21,3,... 1,3,...

16 1
sin sin .

2 2x y
m n

q a m m n
M M

mn m n

• •

= =

p p= = ◊
p +

Â Â

   ( )

2 2
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2 4 4

16 161 1 1
First term

1 1 41 1

q a q a
= ◊ = ◊

¥ p p+

( )
2 2

0 0
2 4 42

16 161 1 9 3
Second term

3 1 1003 1

q a q a¥= - ◊ = -
¥ p p+

  ( )
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0 0
2 4 42

16 161 1 1
Third term

1 3 3001 3

q a q a
= - = -
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2 22
0 0

2 4 4

16 165 5
Fourth term

33805 26

q a q a
= =

¥ p p

  
2 22

0 0
2 4 4

16 161 1
Fifth term

33805 26

q a q a
= =

¥ p p
It may be observed that convergence is not that fast as deflection w. Hence, to get results within

1.1 percent errors only, we have to take at least 3 terms.

5.2 NAVIER SOLUTION FOR ANY LOADING
Navier solution for simply supported rectangular plate subject to any loading can be easily found, if the
load is expressed in the double Fourier form as

1 1

( , ) sin sinmn
m n

m x n y
q x y a

a b

• •

= =

p p= ◊ÂÂ
If we select

       
1 1

sin sinmn
m n

m x n y
w C

a b

• •

= =

p p= ◊ÂÂ
all boundary conditions are satisfied. Then from plate equation we get

4

22
4 2 2

2

mn
mn

a a
C

a
D m n

b

=
Ê ˆ

p +Á ˜Ë ¯

∴    

4

221,3,... 1,3,.., 4 2 2
2

sin sinmn

m n

a a m x n y
w

a ba
D m n

b

• •

= =

p p
= ◊

Ê ˆ
p +Á ˜Ë ¯

Â Â

Thus, if load is expressed in double Fourier form solution is readily available. Depending upon the
loading, rate of convergence may slightly vary.

QUESTIONS

1. Derive the expression for deflection in a slightly bent simply supported rectangular plate subject to uniformly
distributed load over entire plate. Use Navier’s method. Determine the expressions for moments Mx, My, Mxy

and shears Qx, Qy and Vx and Vy.
2. The Fourier equivalent load on a plate of size a × y is

1 1

( , ) sin sin .mn
m n

m x n y
q x y a

a b

• •

= =

p p= ◊ÂÂ
Derive the expressions for the following, if the plate is simply supported along all edges.
w, Mx, My, Mxy, Qx, Qy, Vx  and Vy.



Levy’s Solution for Rectangular
Plate Analysis

Navier’s method is slow because it consists of summation of terms in two directions. Levy suggested
a method in which summation of the Fourier terms in only one direction is required and the boundary
conditions at the other two opposite edges are satisfied by closed form function. As series solution is
in only one direction, it is converging faster than Navier’s solution. This method is directly applicable
for a plate with at least two opposite edges simply supported and the boundary conditions on other two
opposite edges are any. The analysis is little bit lengthy but with only a few terms sufficiently accurate
results can be obtained.

In this chapter, first application of Levy’s method to simply supported rectangular plate is explained.
Then its extension to rectangular plate with various end conditions is explained.

6.1 ANALYSIS OF RECTANGULAR PLATE SUBJECTED TO UDL BY
LEVY’S METHOD

The Fourier equivalent load in x-directions corresponding to uniformly distributed load is

0

1,3,...

4
sin

m

q m x
q

m a

•

=

p=
pÂ

Let the deflection function for a plate of size a × b be,

1

sinm
m

m x
w Y

a

•

=

p
= Â

where Ym is a function of y only.
It satisfies the boundary conditions at x = 0 and at x = a (i.e. w = 0; Mx = 0 at x = 0 and x = a).
Now we have to select Ym such that it satisfies the boundary conditions at y = 0 and y = b and also

the plate equation 4
w

q

D
— =

Now,                   
4 4 4

4 4
sinm

w m m x
Y

ax a

∂ p p=
∂

Â

Chapter
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4 2 2

2 2 2
2 2 sinm

w m m x
Y

ax y a

∂ p p¢¢= -
∂ ∂

Â

      
4

4
sinm

w m x
Y

ay

∂ p¢¢¢¢=
∂

Â

where         
2 4

2 4
 and .m m

m m
Y Y

Y Y
y y

∂ ∂¢¢ ¢¢¢¢= =
∂ ∂

∴ The plate equation for this case is
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Y Y Y
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=
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41
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m

q m x
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•

=

p=
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Comparing term by term, even terms on left hand side vanish and for odd terms, we get;

                   
4 4 2 2

0
4 2

41
2m m m

qm m
Y Y Y

D ma a

p p ¢¢ ¢¢¢- + =
p ...eqn. 6.1

When the above equation is solved there will be four constants of integration and we have got four
boundary conditions i.e. two at y = 0 and two at y = b. Hence, the problem can be solved.

Solution of the equation:
It consists of particular solution and complementary solution.

Particular solution:
The equation 6.1 can be written as

22 2
2 0

2

4
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qm
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m Da

Ê ˆp
- ∂ =Á ˜Ë ¯ p

∴           
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Complementary Integral:

22 2
2

2
0m

m
Y

a

Ê ˆp
- ∂ =Á ˜Ë ¯

.

The repeated roots are

        
2 2

2
2

0
m

a

p - ∂ =

                     
m

a

p∂ = ± .

Hence, the complementary integral is

1 2 3 4

m m m y m y
y y

a a a a
mY H e H e H ye H ye

p - p p - p

= + + +

Since, H1, H2, H3 and H4 are arbitrary constants to be determined from boundary conditions, let us
select some other arbitrary constants Am, Bm, Cm and Dm such that,

1 2,
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m m m mA C A C
H H

+ -
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m m m mB D B D
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B D
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Thus, cosh sinhm m m
m y m y m y

y A B
a a a

p p p= +

        sinh coshm m
m y m y m y

C D
a a a

p p p+ + ...eqn. 6.2

It is convenient to select the origin of the coordinate system x, y at the point of symmetry as shown
in Fig. 6.1.
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a

y

0 x

b/2

b/2

Fig. 6.1

It may be observed that,

cosh
2

m y m y

a am y e e

a

p - p

p +=

and              ( ){ }cosh cosh .
2

m y m y

a ae e m y
m y

a

- p p

+ p
- p - = =

Thus, cosh
m y

a

p
is a symmetric function.

cosh m y�

a
sinhm y�

a

m y�

a
m y�

a

(  ) Variation of cosha
m y�

a (  ) Variation of sinhb
m y�

a

Fig. 6.2

Similarly,

  sinh
2

m y m y

a am y e e

a

p p-
p -=
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and  ( )
sin sinh .

2

m y m y

a am y e e m y

a a

- p p

p - - p= = -

Hence, sinh
m y

a

pÊ ˆ
Á ˜Ë ¯  is antisymmetric function. Figure 6.2 shows the variation of cosh

m y
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p
 and

sinh .
m y

a

p

Similarly, it may be observed that sinh
m y m y

a a

p p
is symmetric term and cosh

m y m y

a a

p p
is anti-

symmetric term.
Hence, when symmetric load acts, there cannot be antisymmetric terms in deflection.
i.e. For symmetric loading, homogeneous solution is

             cosh sinhm m m
m y m y m y

Y A B
a a a

p p p
= + ...eqn. 6.3

Similarly for antisymmetric loading, homogeneous solution is

             sinh coshm m m
m y m y m y m y

Y C D
a a a a

p p p p= + ...eqn. 6.4

The arbitrary constants are to be determined using boundary conditions.
Thus we have

                Y = Yparticular + Yhomogeneous

For udl, since load is symmetric
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0
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.

Redefining the arbitrary constants, let us take
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•

=

p= -Â
The boundary conditions are

at y = ±b/2, w = 0 ...(1)
and                 My = 0

i.e.
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w w
D

x y

Ê ˆ∂ ∂- + =Á ˜∂ ∂Ë ¯ ±
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2
0,

w

x
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∂

 since it is supported all along y = ±b/2.
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Hence, the second boundary condition is

2

2

2

0
b

y

w
D

y =

∂- =
∂ ±

...(2)

From first boundary condition for all odd values of m,

5 5
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Substituting αm for ,
2
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a

p
 the first boundary condition is
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∴ From boundary condition (2), we get
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i.e. (Am + 2Bm) cosh αm + Bm αm sinh αm = 0 ...(4)
Subtracting eqn. (3) from eqn. (4), we get
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Substituting this value of Bm in eqn. (3), we get
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∴ 5 5
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...eqn. 6.5
The above expression for deflected surface is fast converging and hence only a few terms give

sufficiently accurate results. The main reason for fast convergence in one of the series is already
summed up.

6.2 PHYSICAL MEANING OF PARTICULAR AND COMPLEMENTARY
(HOMOGENEOUS) INTEGRALS

Consider a beam of span ‘a’ subject to uniformly distributed load q0 over its entire span. Hence its
deflection is given by
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04

w
D q
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Expressing the load in Fourier form,
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This is same as the first term in deflection expression for plate which is due to particular integral.

Hence, physical meaning of particular integral is, it gives deflection of the plate which has free bound-
ary conditions at edges y = ±b/2. In other words, particular solution is due to cylindrical bending of the
plate. Hence, the complimentary integral gives effect of boundary conditions. Thus, for plate

w = w1 + w2

where w1 – deflection of strip unaffected by boundary conditions at y = ±b/2
and w2 – effect of boundary conditions at y = ±b/2. (Complimentary integral contribution).

6.3 CONVERGENCE STUDY

Maximum deflection occurs at middle of plate i.e. at 
2

a
x = and y = 0.

wcentre = wcentre of strip +wcentre due to complimentary integral

We know,

4
0

centre of strip
5

384
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∴
4

0
centre

1,3,...

2 tanh5
sin

384 2cosh 2
m m

mm

q a m
w

D

•

=

+ a a p= -
aÂ

For a square plate,
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It may be observed that second term in the series is less than 0.04 percentage of first term in the
series. Hence, the first term itself gives more than 99.96 percentage accuracy.

On the same lines moment expressions also may be studied. Study of bending moment values for

different 
b

a
 ratio shows:

1. For 3,
b

a
> the calculation for a plate may be replaced by those for strip.

2. If 2,
b

a
=  the bending moment at middle of the plate is over estimated by 18.6 percent by strip

theory. Hence, many codes recommend design of slabs treating them as one way slabs if 2.
b

a
> Note

that by this approximation error is on safer side.

6.4 COMPARISON BETWEEN NAVIER’S SOLUTION AND LEVY’S SOLUTION
From study of the above two methods the following points may be observed.

1. Navier’s solutions are simple while Levy’s solutions are lengthy.
2. To get satisfactory results more terms in series should be considered when Navier’s method is

used while Levy’s method gives satisfactory results with few terms only.
3. Navier’s solution is applicable for plate with all four edges simply supported whereas Levy’s

method holds good for a plate with two opposite edges simply supported and other two having
any conditions.

4. Levy’s method can be extended for the analysis of plates with any edge conditions whereas it is
not possible to use Navier’s solutions for plate with boundary conditions other than all four edges
simply supported.

QUESTION

1. Derive the expressions for deflection for a simply supported rectangular plate of size a × b. Use Levy’s
method.



Rectangular Plates with
Various Edge Conditions

In general, we come across plates with various edge conditions. Some edges may be free, some fixed
and some other clamped. It is possible to extend plate theory to all possible combinations of edge
conditions. In this chapter, method of analysing plates with various combination of edge conditions is
discussed. First, a case of a plate with all edges simply supported and subject to moments f1(x) and f2(x)
along edges y = 0 and y(b) is presented. Then using this solution with other solutions is discussed for
getting solution for plates with different edge conditions.

7.1 SIMPLY SUPPORTED PLATE SUBJECT TO MOMENTS ALONG y = 0 AND
y = b

Figure 7.1 shows a rectangular plate of size a × b simply supported along all four edges and subjected
to moments f1(x) along y = −b/2 edge and f2(x) along the edge y = b/2.

b/2

b/2

f (x)1

f (x)2

a

x0

y

Fig. 7.1 Plate subjected to edge moments

For this case the deflection function w should satisfy the plate equation

4 4 4

4 2 2 4
2 0

w w w q

Dx x y y

∂ ∂ ∂+ + = =
∂ ∂ ∂ ∂ ...eqn. 7.1

Chapter

7
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and also the following boundary conditions.

w = 0 and 
2

2
0

w

x

∂
=

∂
 for the edges x = 0 and x = a

w = 0 at y = ±b/2 ...eqn. 7.2

( )
2

12

2
b

y

w
D f x

y =-

Ê ˆ∂- =Á ˜∂Ë ¯ ...eqn. 7.3

and  
( )

2

22

2
b

y

w
D f x

y =

Ê ˆ∂- =Á ˜∂Ë ¯ ...eqn. 7.4

In this case as q(x, y) = 0, particular integral is zero. Hence, Levy’s solution is

                 sinm
m x

w Y
a

p= Â

where cosh sinh sinh coshm m m m m
m y m y m y m y m y m y

Y A B C D
a a a a a a

p p p p p p
= + + +

If f1(x) and f2(x) are not the same, it is possible to split the case into a symmetric case of loading

1 2( ) ( )

2

f x f x+
 and an anti-symmetric case of loading 1 2( ) ( )

2

f x f x-
 as shown in Figure 7.2. For example,

if f1(x) is a uniform moment of 80 kN-m and f2(x) = 60 kN-m it may be split into a symmetric uniform

moment of 
80 60

70
2

+ = kN-m and an anti-symmetric uniform moment of 
80 60

10
2

- =  kN-m. Hence

it is better to study the analysis for a symmetric moment sinm
m x

E
a

pÂ  and for an anti-symmetric

moment sinm
m x

E
a

p¢Â .

80 kN-m 70 kN-m

70 kN-m

10 kN-m

10 kN-m

60 kN-m

General case Symmetric case Anti-symmetric case

Fig. 7.2
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(a) Symmetric Moment Case

Figure 7.3 shows this case.

a

0 x

y

b/2

b/2

� E sinm
m x�

a

� E sinm
m x�

a

Fig. 7.3 Plate with symmetric edge moments

Since, the loading is symmetric, the anti-symmetric terms in deflection expression must vanish i.e.
Cm = Dm = 0.

∴ cosh sinh sinm m
m y m y m y m x

w A B
a a a a

p p p pÊ ˆ= +Á ˜Ë ¯Â
The boundary condition w = 0 at y = ±b/2 gives

0 cosh sinh
2 2 2m m

m b m b m b
A B

a a a

p p p= +

Substituting αm for ,
2

m b

a

p
we can write

0 cosh sinhm m m m mA B= a + a a ...(1)

Now             sinh sinh cosh sinm m m
w m m y m y m y m y m x

A B B
y a a a a a a

∂ p p p p p pÊ ˆ= + +Á ˜Ë ¯∂ Â

2 2 2

2 2
cosh cosh cosh sinh sinm m m m

w m m y m y m y m y m y m x
A B B B

a a a a a ay a

∂ p p p p p p pÊ ˆ= + + + ◊Á ˜Ë ¯∂
Â

      
2 2

2
cosh 2 cosh sinh sinm m m

m m y m y m y m y m x
A B B

a a a a aa

p p p p p pÊ ˆ= + +Á ˜Ë ¯Â
Hence, boundary condition

siny m
m x

M E
a

p=Â
at y = ±b/2 means
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2

2

2

sinm
b

y

w m x
D E

ay =

∂ p- =
∂ Â

±

Comparing term by term,

( )
2 2

2
cosh 2 cosh sinhm m m m m m m m

m
D A B B E

a

p
- a + a + a a =

or
2

2 2
cosh 2 cosh sinhm m m m m m m m

a
A B B E

m D
a + a + a a = -

p
...(2)

Subtracting equation (1) from equation (2), we get

2

2 2
2 coshm m m

a
B E

m D
a = -

p

∴              

2

2 22 cosh
m

m
m

a E
B

m D
= -

p a

From eqn. (1)

             tanhm m m mA B= - a a
Substituting the value of Bm, we get

             

2

2 2
tanh

2 cosh
m

m m m
m

a E
A

m D
= a a

p a

∴   
2

2 2
1

tanh cosh sinh sin
2 cosh

m
m m

m m

Ea m y m y m y m x
w

a a a aD m

•

=

p p p pÊ ˆ= a a -Á ˜Ë ¯p a
Â ...eqn. 7.5

Particular Cases:
If moment is uniform along edges y = ±b/2, f1(x) = M0,

           
0

0
1,3,...

4
sin

m

M m x
M

m a

•

=

p=
pÂ

i.e.            04
m

M
E

m
=

p

∴  
2

0
3 3

1,3,...

2 1
tanh cosh sinh sin

cosh
m m

m m

M a m y m y m y m x
w

a a a aD m

•

=

p p p pÊ ˆ= a a -Á ˜Ë ¯p a
Â

Along middle line i.e. at y = 0,

        

2
0

0 3 3
1,3,...

2 1
tanh sin

cosh
y m m

m m

M a m x
w

aD m

•

=
=

p= ◊a a
p a

Â
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If a is very large compared to b,

tanh  and cosh 1.m m ma = a a =

   
2

20
0 3 3

2 1
sinhy m

M a m x
w

aD m
=

p= ◊a
p

Â

           
2 2 2 2

0
3 3 2

2 1
sin

4

M a m b m x

aD m a

p p= ◊
p

Â

           
2

0 1
sin

2

M b m x

D m a

p
=

p Â

(b) Anti-symmetric Case

Consider the anti-symmetric case shown in Fig. 7.4 in which

a

b/2

b/2

x0

y

Fig. 7.4 Plate with anti-symmetric edge moment sinm
m x

E
a

π′∑

1 2( ) ( ) sinm
m x

f x f x E
a

p¢= - =Â
Since, it is anti-symmetric case, symmetric terms in general solution must vanish.

i.e.  Am = Bm = 0.

Hence,
1

sinh cosh sinm m
m

m y m y m y m x
w C D

a a a a

•

=

p p p pÊ ˆ= +Á ˜Ë ¯Â

From boundary condition, 2 0,y bw ±= =  we get

sin cosh 0
2 2 2m m

m b m b m b
C D

a a a

p p p
+ ◊ =
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i.e. sinh cosh 0m m m m mC Da + a a = ...(3)

Now             
1

cosh cosh sinh sinm m m
m

w m m y m y m y m y m x
C D D

x a a a a a a

•

=

È ˘∂ p p p p p pÊ ˆ= + + ◊Á ˜Í ˙Ë ¯∂ Î ˚
Â

∴               ( )
2 2 2

2 2
1

sinh sinh cosh sinm m m m
m

w m m y m y m y m y m x
C D D D

a a a a ax a

•

=

∂ p p p p p pÈ ˘= + + + ◊Í ˙Î ˚∂
Â

  ( )
2 2

2
1

2 sinh cosh sinm m m
m

m m y m y m y m x
C D D

a a a aa

•

=

p p p p pÈ ˘= + +Í ˙Î ˚Â

From boundary condition 
2

2

2

sinm
b

y

w m x
D E

ay =

∂ p¢- =
∂ Â

±

( )
2 2

2
2 sinh cosh .

2 2 2m m m m
m m b m b m b

D C D D E
a a aa

p p p pÈ ˘ ¢- + + =Í ˙Î ˚

i.e. ( )
2

2 2
2 sinh coshm m m m m m m

a
C D D E

m D
¢+ a + a a = -

p

Subtracting equation (3) from equation (4) we get

2

2 22 sinh
m

m
m

a E
D

m D

¢
= -

p a

Hence, from equation (3), we get

2

2 2
coth

2 sinh
m m

m m
m

a E
C

m D

¢ a
= ◊ a

p a

∴  
2

2 2
1

coth sinh cosh sin
2 sinh

m
m m

m m

Ea m y m y m y m y
w

a a a aD m

•

=

¢ p p p pÈ ˘= a a -Í ˙Î ˚p a
Â ...eqn. 7.6

The following differences in equation 7.5 and 7.6 may be noted:

In  symmetric case In anti-symmetric case

tanh αm → coth αm

cosh αm → sinh αm

cosh
m y

a

p
→ sinh

m y

a

p

and sinh
m y

a

p
→ cosh

m y

a

p
.
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(c) If Moments at y = −b/2 and y = b/2 are Different

If the moments applied along edges y = −b/2 and y = b/2 are different, they may be split into a
symmetric case and an anti-symmetric case as shown in Fig. 7.2. Let,

symmetric moment be sinm
m x

E
a

p
 and anti-symmetric moment be sinm

m x
E

a

p¢ . Then obviously

solution for such case is

2

2 2
1

sin
tanh cosh sinh

cosh2
m

m m
mm

m x
Ea m y m y m yaw

a a aD m

•

=

p
È p p pÊ ˆ= a a -Á ˜Í Ë ¯ap Î

Â

      coth sinh cosh
sinh

m
m m

m

E m y m y m y

a a a

¢ ˘p p pÊ ˆ+ a a -Á ˜ ˙Ë ¯a ˚
...eqn. 7.7

If the bending moment is acting only along the edge y = −b/2, moment along edge y = b/2 is zero.

Then symmetric moment is 1

2

f
 and anti-symmetric moment is also 1

2

f
.

7.2 RECTANGULAR PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED
AND THE OTHER TWO EDGES FIXED

Figure 7.5 shows a typical rectangular plate considered. The plate is subjected to udl q0.

a

b/2

b/2

q0

x0

y

Fig. 7.5 Plate with edges y = ±b/2 fixed

This problem can be solved by Levy’s method applying boundary conditions at y = ±b/2 as w = 0

and 0.
w

y

∂ =
∂

 However, here it is solved by superposition of an appropriate edge moment case on the

simply supported case. The value of moment to be applied at the edges is arrived from the consideration
that when the two cases are combined slope at fixed edges should be zero.

Figure 7.6 shows how given problem can be split into two cases. The solution for case I and case II
clubbed with the condition that
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1 2 0 at 
2

w w b
y

y y

∂ ∂
+ = =

∂ ∂
±

gives the solution for the given case. Thus, the deflection for the given case is
w = w1 + w2.

q0

Case I Case II

+

Fig. 7.6 Splitting the case shown in Figure 7.5 into two cases

From equation 6.5, we know for case I,

4
0

1 5 5
1,3...

4 2 tanh 1
1 cosh sinh sin

2cosh 2cosh
m m

m mm

q a m y m y m y m x
w

a a a am D

•

=

+ a a p p p pÈ ˘= - +Í ˙a ap Î ˚
Â

∴              
4

01
5 5

1,3...

4 2 tanh
sinh

2cosh
m m

mm

q aw m m y

y a am D

•

=

+ a a∂ p pÈ= -Í∂ ap Î
Â

1 1
sinh cosh sin

2cosh 2coshm m

m y m y m y m y

a a a a

p p p p˘+ + ˙a a ˚

∴       
( )3

01
4 4

1,3...
2

2 tan4 1 1 1
tanh tanh sin

2 2 2
m m

m m m
b my

q aw m y

y aD m±

•

==

È ˘+ a a∂ p= - a + a + aÍ ˙
∂ Î ˚p

Â

( )
3

0
4 4

1,3...

2 1
tanh 1 tanh sinm m m m

m

q a m y

aD m

•

=

pÈ ˘= a - a + a aÎ ˚p
Â

w2 for this case is given by equation 7.6. Thus,

                  

2

2 2 2
1,3...

tanh cosh sinh sin
2 cosh

m
m m

m m

Ea m y m y m y m x
w

a a a aD m

•

=

p p p pÈ ˘= a a -Í ˙Î ˚p a
Â

∴             
2

2
2

1,3,...

tanh sinh
2 cosh

m
m m

m m

Ew a m m y

y a aD m

•

2
=

∂ p pÈ= ◊ a aÍ∂ Îp a
Â

sinh cosh sin
m y m y m y m x

a a a a

p p p p˘- - ◊ ˙̊
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∴    2

1,32

tanh tanh tanh sin
2

m
m m m m m

my b

Ew a m x

y D m a…

•

==±

∂ p= a a a - a - aÈ ˘Î ˚∂ p Â

( )
1,3,...

tanh tanh 1 sin
2

m
m m m m

m

Ea m x

D m a

•

=

pÈ ˘= a a a - - aÎ ˚p Â
The condition to be satisfied is

1 2

2 2

0
b b

y y

w w

y y= =

∂ ∂
+ =

∂ ∂± ±

i.e.
1 2

2 2

b b
y y

w w

y y± ±= =

∂ ∂
= -

∂ ∂

i.e. ( )
3

0
4

1,3,...

2 1
tanh 1 tanh sinm m m m

m

q a m x

mn aD

•

=

pÈ ˘a - a + a aÎ ˚p
Â

( )
1,3,...

tanh tanh sin
2

m
m m m m

m

Ea m x

D m a

•

=

pÈ ˘= - a a a - aÎ ˚p Â
Comparing term by term and rearranging we get for all odd values of m

          
( )
( )

2
0

3 3

tanh 1 tanh4

tanh tanh 1
m m m m

m
m m m m

q a
E

m

a - a + a a
=

a - a a a -p

Hence, the bending moment along fixed edges are

2
1,3,...

siny b m
m

m x
M E

a
±

•

=
=

p= Â

             
( )

( )
2

0
3 3

tanh 1 tanh4 1
sin

tanh tanh 1
m m m

m m m m

q a m x

am

a - a + a p=
a - a a a -p

Â
For a square plate maximum value at midspan may be obtained by substituting

. ., .
2 2m

m b m
a b i e

a

p p= a = =

and 2x a=

      

2
0

max 3 3
1,3,...

tanh 1 tanh
4 1 2 2 2 2 sin

2
tanh tanh 1

2 2 2 2
m

m m m m
q a m

M
m m m mm

•

=

p p p pÊ ˆ- +Á ˜Ë ¯ p
=

p p p pÊ ˆp - -Á ˜Ë ¯

Â
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Noting that  tanh 0.9175
2

p =

3
tanh 0.99984

2

p =

and for all other higher values of m,

tanh 1.0,
2

mp
= we get

    
2

0
max 3 3 3 3

4 1 1 1
0.57236 0.03692 ...

5 7 9

q a
M

È ˘= - + - + - +Í ˙p Î ˚

            20.06973 qa= -
Note  that the first term itself gives about 6% extra moment. Thus, even if only one term of the series

is considered there is only 6% overestimation.

Deflection study
Consider deflection due to edge moments only.

  
2

2 2 2
1,3,...

sin
tanh cosh sinh

2 cosh

m

m m
m m

m x
Ea m y m y m yaw

a a aD m

•

=

p
p p pÈ ˘= a a -Í ˙Î ˚p aÂ

At centre of plate y = 0 and 2x a= .

∴               
2

2, centre 2 2
1,3,...

sin
2 tanh 0

2 cosh

m

m m
m m

m
Ea

w
D m

•

=

p

= a a -È ˘Î ˚p a
Â

Substituting the value of Em, we get

                 
( )
( )

22
0

2, centre 2 3 3 2
1,3,...

sin tanh 1 tanh4 2 tanh
tanh tanh 12 cosh

m m m m
m m

m m m mm m

m
q aa

w
D m m

•

=

p
a - a + a a

= ¥ a a
a - a a a -p p a

Â

      
( )
( )

4
0
5 5

1,3,...

sin tanh 1 tanh2 tanh2
cosh tanh tanh 1

m m m mm m

m m m m mm

m
q a

D m

•

=

p
a - a + a aa a

= ¥
a a - a a a -p

Â

Noting that ( )
1

2sin 1 ,
2

mm -p = -  we can write

                 
( ) ( )

( )

1
4

20
2, centre 5 5

1,3,...

tanh tanh 12 tanh1

cosh tanh tanh 1

m

m m m mm m

m m m m mm

q a
w

D m

-
•

=

a - a a a +a a-= ¥
a a - a a a -p

Â
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For square plate: a = b i.e.
2m

mpa =

Hence, we get

                                ( )
2

0
2, centre 5

2
0.328 0.000378 ......

q a
w

D
= - + -

p

4

0.00214
qa

D
= -

For plate with udl,

          
4

0
1, centre 0.00406

q a
w

D
=

∴      ( )
4

0
1 2 0.00406 0.00214

q a
w w w

D
= + = -

                     
4

00.00192
q a

D
=

Note that second term of the series contributes very little. Thus, it is a fast converging series.
Using total solution (w = w1 + w2) it is possible to assemble all stress resultants.

7.3 RECTANGULAR PLATE WITH ALL FOUR EDGES FIXED
Figure 7.7 shows a rectangular plate with all four edges fixed and subjected to uniformly distributed
load.

a/2a/2

b/2

b/2

0

q0

x

y

Fig. 7.7 Fixed plate subject to udl q0



66 THEORY OF PLATES AND SHELLS

qo
x

y (w )1 (w )2 (w )3
y y

x
x

Fig. 7.8 Equivalent of fixed plate

The given case may be split into the following three cases (Refer Fig. 7.8).

Case I: A simply supported plate subject to udl.

Case II: A simply supported plate subject to symmetric moment along y = ±b/2.

Case III: A simply supported plate subject to symmetric moment along y = ±a/2.

Thus,
w = w1 + w2 + w3.

For first two cases, we have already solution available. To have convenient coordinates, it is better

to keep origin at centre of the plate. It may be achieved by replacing x by 
2

a
x -  in the solutions already

found for case I and case II. Then to get the solution for case III, interchange x and y in the expression
for w2. Thus, expression for w3 is also obtained. Then the boundary conditions to be satisfied are

31 2

2

0
y b

ww w

y y y ±=

∂∂ ∂Ê ˆ+ + =Á ˜∂ ∂ ∂Ë ¯

and
31 2

2
0

x a

ww w

x x x ±=

∂∂ ∂Ê ˆ+ + =Á ˜Ë ¯∂ ∂ ∂

From these conditions functions Em′ and Em″ may be found.

w = w1 + w2 + w3

After finding w, stress resultants may be assembled.

7.4 RECTANGULAR PLATE WITH ONE EDGE SIMPLY SUPPORTED,
OTHER EDGES FIXED

The plate is ABCD as shown in Figure 7.9. For this first analysis may be made for a plate of size
a × 2b fixed along all edges subject to anti-symmetric loading.

This case is shown in Figure 7.10. Now along edge AB, due to anti-symmetry

w = 0 and My = 0.

Thus, it satisfies required boundary condition along AB. Hence, the required solution is obtained for
the case considered.



RECTANGULAR PLATES WITH VARIOUS EDGE CONDITIONS 67

a

b

A B

D C

q0

Fig. 7.9 Plate with three edges fixed and one simply supported

b

b

a

q0

�q0

0 x

y

Fig. 7.10 Equivalent of plate shown in Figure 7.9

7.5 RECTANGULAR PLATE WITH TWO ADJACENT EDGES SIMPLY SUPPORTED
AND OTHER TWO FIXED

This case is shown in Figure 7.11. This case may be solved from the analysis of a fixed plate subject
to anti-symmetric load of size 2a × 2b as shown in Figure 7.12. It satisfies the required boundary
conditions along edges AB and AC.
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a

b q0

Fig. 7.11 Plate with two adjacent sides fixed and other two simply supported

2a

q0

q0

�q0

�q0

2b

Fig. 7.12 Equivalent of plate shown in Figure 7.11

7.6 RECTANGULAR PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED,
ONE EDGE FIXED AND ANOTHER FREE

This case is shown in Figure 7.13.

q

Fig. 7.13 Plate with two opposite edges simply supported, one edge fixed and other free
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For this case
w = w1 + w2

where w1 is particular solution and w2 is complementary solution.

We know

4
0

1 5 5
1,3,...

4 1
sin

m

q a m x
w

aD m

•

=

p=
p

Â

and 2 sinm
m x

w Y
a

p
=Â

where
4

0 cosh sinh sinh coshm m m m m
q a m y m y m y m y m y m y

Y A B C D
D a a a a a a

p p p p p pÈ ˘= + + +Í ˙Î ˚
The boundary conditions to be satisfied are

At  x = 0 and x = a

w = 0 and 
2

2
0

w

x

∂ =
∂

Hence, by taking series in the form of sin
m x

a

π
 the boundary conditions are satisfied.

The following boundary conditions help to get the constants Am, Bm, Cm and Dm.
w = 0 at y = 0

0 at 0.
w

y
y

∂ = =
∂

2 2

2 2
0 at 

w w
y b

x y

Ê ˆ∂ ∂m + = =Á ˜∂ ∂Ë ¯

    ( )
3 3

3 2
2 0 at 

w w
y b

y x y

∂ ∂+ - m = =
∂ ∂ ∂

Hence, the total solution is obtained.

7.7 RECTANGULAR PLATES WITH THREE EDGES BUILT IN AND FOURTH EDGE FREE
Figure 7.14 shows this case. Such cases commonly appear in the design of water tanks and counterfort
retaining walls.

q q

Fig. 7.14 Plate with three edges Fig. 7.15 Equivalent for plate shown in Figure 7.14
fixed, fourth free
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The analysis may be treated as the analysis of a plate of size a × b with three edges fixed and fourth
edge free, subject to given loading (Ref. Figure 7.15) plus the solution for a plate with edges x = 0 and
x = a subject to symmetric moment with the conditions slopes at x = 0 or x = a in x direction are zero.

7.8 RECTANGULAR PLATE CONTINUOUS IN ONE DIRECTION

Consider the analysis of continuous plate shown in Figure 7.16. The end plate 1, may be treated as a

simply supported plate subject to moment 
1

sinm
m x

E
a

pÂ  along the continuous edge. The intermediate

plate may be treated as a simply supported plate subject to moment 
1

sinm
m x

E
a

pÂ  at one edge and the

moment 
2

sinm
m x

E
a

pÂ  at the other edge. The third plate is treated as a simply supported plate with

moment sinm
m x

E
a

pÂ  at the continuous edge.

a1a1a2a1 a3

x1

y1

x2

y2

x3

y3

b

Fig. 7.16 Continuous plate in one direction

To get Em
1
 and Em

2
 the conditions to be satisfied are

1 2
1 2

1 2

1 2
2 2

a a
x x

w w

y y
= =-

∂ ∂
=

∂ ∂ ...(1)

and 2 3
2 3

32

2 3
2 2

.
a a

x x

ww

y y
= =-

∂∂
=

∂ ∂

It may be noted that if a1 = a2 = a3 = a it reduces to problem with only one unknown Em.
One can find deflections first and then assemble coefficients for moments.

7.9 RECTANGULAR PLATES CONTINUOUS IN BOTH DIRECTIONS
This case is shown in Fig. 7.17. Slabs are usually simply supported along outer edges and continuous
over beams or walls and are subjected to downward load. Any panel in the slab may be approximated
as one of the six panels shown in Fig. 7.18. For these cases method of finding edge moment and stress
resultants have been already discussed.

.
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Fig. 7.17 Rectangular plate continuous in both directions

0 0
0

I II III

0 0

IV V VI

0

Fig. 7.18 Standard Cases

At common edges moments may slightly differ, but average moment may be approximately taken as
final moment.

To get design moment at centre of the plate we know the panel should be loaded with live load and
the adjacent panel should not be loaded. The solution for this case is obtained as an appropriate
standard case with q0 + p/2 load plus a simply supported plate with p/2 load where q0 is dead load and
p is live load.

The second part considered is appropriate since if we consider a load of p/2 applied in the checker
bound form as shown in Figure 7.19, each panel behaves as a simply supported case. Hence, final
moment at centre of span
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= Moment at centre of span in standard case with a load of (q0
 + p/2)

   + Moment in simply supported slab with load of p/2.

� � �

�

�

� � � �

���

Fig. 7.19 Checker bound loading

QUESTIONS

1. Analyse a simply supported rectangular plate of size a × b if it is subjected to
(a) Uniform symmetric moment at y = ±b/2.
(b) Uniform anti-symmetric moment at y = ±b/2.

2. Discuss the extension of Levy’s method for the analysis of a fixed plate subject to udl q0.
3. Discuss the analysis of continuous plate to get maximum moment at mid-spans. Assume continuity is in both

directions and the plate is loaded with dead load q0 and a live load of p per unit area.



Circular Plates Bent
Axi-symmetrically

Circular plates are commonly used as base slabs of circular water tanks and as footings for circular
columns. Usually they are subjected to uniform loads and have axi-symmetric edge conditions. Hence,
the bending is axi-symmetric. In this article after deriving equation of equilibrium for axi-symmetric
bending of circular plate, number of standard cases are analysed and at the end it is pointed out how
several cases can be analysed by suitably combining standard cases.

8.1 CO-ORDINATES AND ELEMENT
For the analysis of circular plates polar coordinate system is more convenient. Figure 8.1 shows a
typical circular plate of radius ‘a’ with polar coordinates for an element of size rdθ × dr ; located at
distance r from centre of plate and making angle θ with a reference axis. Downward direction is
positive z-coordinate direction.

a

0
�

r dr
d�

Fig. 8.1 Circular plate and polar coordinates

Figure 8.2(a) shows the moments Mr, Mθ and Mrθ acting on the element and Figure 8.2(b) shows the
shear forces and the load intensity qrθ acting on the element, where

Mr = radial moment per unit length

Chapter

8
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Mθ = Circumferential moment per unit length
Mrθ = Mθr = Twisting moment per unit length

Qr = radial shear per unit length
and Qθ = Circumferential shear per unit length.

M
�

M
�r

Mr

Mr
+

Mr�
+

M
�r
+

M
�

+

Mr�

qr�

Qr Q
�

Q
�

+

Qr
+

d�

Fig. 8.2 (a) Moments on the element Fig. 8.2 (b) Forces on the element

All the stress resultants have been shown with their positive senses. The sign convention used is, a
stress resultant is positive when it is acting on positive face in positive direction of coordinate or when
it is acting on negative face in negative direction. It may be noted that forces on positive faces differ
from these on negative faces and their relation is obviously as given below:

r
r r

M
M M dr

r
+ ∂
= +

∂

M
M M d+ q

q q
∂

= + ◊ q
∂q

r
r r

M
M M dr

r
+ q
q q

∂
= + ◊

∂ ...eqn. 8.1

r
r r

M
M M d

+
+ + q
q q

∂
= + q

∂q

r
r r

Q
Q Q dr

r
+ ∂
= +

∂

Q
Q Q d+ q
q q

∂
= + ◊ q

∂q

It may also be noted that qrθ is load intensity. Hence, total down load = qrθ dθrdr = qrθ rdrdθ
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8.2 AXI-SYMMETRIC BENDING OF PLATE
If the boundary conditions and loads are axi-symmetric the plate bending also should be axi-symmetric.
In other words, the condition of a strip represents the condition of the plate. Hence, in such bending
twisting moment is zero and there is no variation of any force or moment with respect to θ. It means
Mθr, Mrθ and Qθ are zero. Thus in axi-symmetric bending a typical element is subjected to Mr, Mθ and
Qr only.

�

d�

d�

� �+ d

B

B�

r

B
A0

z

Fig. 8.3 Axi-symmetrically bent plate

Figure 8.3 shows shape of axi-symmetrically bent plate. The radii of curvatures of points at distance
r meet at B and those at points r + dr meet at B′. Since, bending is axi-symmetric B and B′ are on a
vertical line through centre of the plate. Let slope of bent plate at radius r (i.e. at A) be φ and that at
r + dr (i.e. at A′) be φ + dφ. Hence, radius of curvature AB makes angle φ with vertical through centre
O and A′B′ makes angle φ + dφ with vertical through O as shown in the figure.

Slope at
w

A
r

∂
= -

∂
, since as r increases w decreases.

i.e.     w

r

∂f = -
∂

...eqn. 8.2

Curvature of the middle surface in the diametral section rz is,

2

2

1 1

n

d w

AC r dr r

f ∂= = = -
∂

...eqn. 8.3
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The second principal curvature is in the θ-direction. It may be observed that the normals such as AB
for all points at radial distance r form a conical surface with B as apex. Hence, AB is the radius of
principal curvature in θ-direction. Thus,

rθ = AB.
From Figure 8.3, it is clear that,

r = AB ⋅ φ = rθφ
∴ Second principal curvature is

1 1 w

r r r rq

f ∂
= = -

∂ ...eqn. 8.4

Hence, the expression for Mr is given by

                     
1 1

r
n

M D
r rq

Ê ˆ= + mÁ ˜Ë ¯

    
2

2

w w
D

r rr

Ê ˆ∂ m ∂= - +Á ˜Ë ¯∂∂
...eqn. 8.5

Similarly

                     
1

n

M D
r rq

q

mÊ ˆ= +Á ˜Ë ¯

    
2

2

1 w w
D

r r r

Ê ˆ∂ ∂
= - + mÁ ˜Ë ¯∂ ∂

...eqn. 8.6

Equilibrium of the element
As stated earlier in axi-symmetrical bending any element is subjected to Mr, Mθ, Qr and applied load
intensity. Figure 8.4(a) shows the section and Figure 8.4(b) shows the plan of the element at (r, θ).

0

�r
Mr

q

h r

z

a

r

Mr
+

�r
+

dr

Mr
+Mr

M
�

M
�

(  )a

(  )b

Fig. 8.4 (a) Sectional view (b) Plan view
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Now, r
r r

M
M M dr

r
+ ∂
= +

∂

M
M M d+ q

q q
∂

= + ◊ q
∂q

      = Mθ   since, there is no variations w.r.t. θ

r
r r

Q
Q Q dr

r
+ ∂
= +

∂
From equilibrium condition ∑Mr = 0, we get

( ) ( )2 sin
2

r
r r

M d
M dr r dr d M rd M dr

r q
∂ qÊ ˆ+ + q - q -Á ˜Ë ¯∂

( ) 0
2 2

r
r r

Q dr dr
Q dr r dr d Q rd

r

∂Ê ˆ- + + q - q =Á ˜Ë ¯∂

Since, dθ is small quantity we can take sin
2 2

d dq q=

Neglecting small quantity of higher order, we get

0r
r r

M
M dr d r dr d M dr d Q r dr d

r q
∂

q + q - q - q =
∂

Throughout dividing by r dr dθ, we get

0r r
r

MM M
Q

r r r
q∂

+ - - =
∂

Substituting
2

2r
w w

M D
r rr

Ê ˆ∂ m ∂
= - +Á ˜Ë ¯∂∂

and 
2

2

1w w
M D

r rr
q

Ê ˆ∂ ∂= - m +Á ˜Ë ¯∂
, we get

2 2 2

3 2 2 2

w w w D w w
D

r r r r rr r r r

Ê ˆ Ê ˆ∂ m ∂ m ∂ ∂ m ∂
- + - - +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂∂ ∂ ∂

( )
2

2

1 1
r

w w
D Q

r r rr

Ê ˆ∂ ∂
- - m + =Á ˜Ë ¯∂∂

3 2 2 2

3 2 2 2 2 2 2

1 1 rQw w w w w w w

r r r r r Dr r r r r r r

∂ m ∂ m ∂ ∂ m ∂ ∂ ∂+ - + + - m - = -
∂ ∂ ∂∂ ∂ ∂ ∂

3 2

3 2 2

1 1 rQw w w

r r Dr r r

∂ ∂ ∂+ - = -
∂∂ ∂

i.e. 1 rQw
r

r r r r D

È ˘∂ ∂ ∂Ê ˆ = -Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚
...eqn. 8.7

The above equation is known as plate equation for axisymmetric plate bending.
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Example 8.1. Analyse a circular plate of radius ‘a’ supported throughout at its outer edge and subjected
to uniform moment M.

r

a

Fig. 8.5 Example 8.1

Solution. The plate equation is

1 rQw
r

r r r r D

È ˘∂ ∂ ∂Ê ˆ = -Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚
In this case, Qr = 0.

∴
1

0.
w

r
r r r r

È ˘∂ ∂ ∂Ê ˆ =Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚

∴ 1
1

,
w

r C
r r r

∂ ∂Ê ˆ =Á ˜Ë ¯∂ ∂
where C1 is a constant.

i.e. 1
w

r C r
r r

∂ ∂Ê ˆ =Á ˜Ë ¯∂ ∂
Integrating both sides again, we get

2

1 2 ,
2

w r
r C C

r

∂ = +
∂

where C2 is a constant.

∴ 1 2

2

C r Cw

r r

∂ = +
∂
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Integrating both sides once again, we get 
2

1
2 3log ,

4

C r r
w C C

a
= + +  where C3 is a constant. Note

that in the above form instead of C2log r it is written as C2log r/a, since,
C2log r/a = C2 log r − C2 log a

and C2 log a is a constant. Hence, it just alters the arbitrary constant C3 which is yet to be determined.
The form log r/a is convenient to apply boundary conditions.

To determine the three arbitrary constants C1, C2 and C3 the following three boundary conditions are
available.

0 at 0
w

r
r

∂ = =
∂

...(1)

   w = 0 at r = a ...(2)
and   Mr = M at r = a. ...(3)

From boundary condition 1, we get

   20
0

C
=

This is possible if and only if   C2 = 0
∴   C2 = 0

From boundary condition (2), we get

   
2

1
3 20 ,  since 0.

4

C a
C C= + =

∴  
2

1
3 4

C a
C = -

Hence,   
2 2

1 1

4 4

C r C a
w = -

     ( )2 21

4

C
a r= - -

From boundary condition (3),

r r a
M M= =

2

2
r a

w w
D M

r rr =

Ê ˆ∂ m ∂- + =Á ˜Ë ¯∂∂

( )1 2 2
4

C
D r M

r

mÈ ˘- + - =Í ˙Î ˚

[ ]1 1
2

DC
M- + m =

∴ ( )1
2

1

M
C

D
= -

+ m
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∴  ( )
( )2 22 1

1 4

M
w a r

D
= ¥ -

+ m

i.e.  ( )
( )2 2

2 1

M
w a r

D
= -

+ m ...eqn. 8.8

∴ At any point,

                     
2

2r
w w

M D
r rr

Ê ˆ∂ m ∂
= - +Á ˜Ë ¯∂∂

    ( )
( ) ( )

( )
2

2
2 1 2 1

M M r
D

D r D

È ˘m -= - - +Í ˙+ m + mÎ ˚

    [ ]1
1

M= + m
+ m

     M=

Similarly,                      ( )1 .
1

M
M Mq = m + =

+ m
Thus in this case at any point

                      .rM M Mq= = ...eqn. 8.9

Example 8.2. Analyse a circular plate of radius ‘a’ carrying udl q, if its outer edge is having fixed
support.

Solution. Figure 8.6 shows such plate.

q
a

q

QrQr

[Note - Q value will be ver � ]

Fig. 8.6 Shear is fixed plate subject to udl ‘q’
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The shearing stress Qr is given by
2πr Qr + πr2q = 0

2r
qr

Q = -  [Note: It is upward at outer edge.]

∴ From plate equation, we get

1

2
rQw qr

r
r r r r D D

È ˘ -∂ ∂ ∂Ê ˆ = =Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚

∴
2

1
1

4

w qr
r C

r r r D

∂ ∂Ê ˆ = +Á ˜Ë ¯∂ ∂

i.e.
3

14

w qr
r C r

r r D

∂ ∂Ê ˆ = +Á ˜Ë ¯∂ ∂

∴
24

1
216 2

C rw qr
r C

r D

∂
= + +

∂

i.e.   
3

1 2

16 2

C r Cw qr

r D r

∂ = + +
∂

∴     
24

1
2 3log

64 4

C rqr
w C r a C

D
= + + +

Boundary conditions to be satisfied are,

 0 at 0
w

r
r

∂ = =
∂ ...(1)

 0 at 
w

r a
r

∂ = =
∂ ...(2)

and w = 0 at r = a ...(3)
From boundary condition 1, we get

   20
0

C
=

This is possible only when C2 = 0.
From boundary condition 2,

  
3

10 ,
16 2

C aqa

D
= +      since C2 = 0.

∴
2

1 8

qa
C

D
= -

∴  
4 2 2

364 8 4

qr qa r
w C

D D
= - +
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Hence, from boundary condition (3),

  
4 4

30
64 32

qa qa
C

D D
= - +

∴
4

3 64

qa
C

D
=

Thus,  
4 2 2 4

64 32 64

qr qa r qa
w

D D D
= - +

i.e.  ( )22 2

64

q
w r a

D
= - ...eqn. 8.10

∴   Maximum deflection is at centre of the plate, where r = 0.

                  
4

max 64

qa
w

D
=

Now,  ( )
3 2

2 2

16 16 16

w qr qa r qr
r a

r D D D

∂ = - = -
∂

and ( )
2 2 2

2 2
2

3
3

16 16 16

w qr qa q
r a

D D Dr

∂
= - = -

∂
Hence,

                    
2

2r
w w

M D
r rr

Ê ˆ∂ m ∂
= - +Á ˜Ë ¯∂∂

  ( ) ( )2 2 2 23
16 16

q q
D r a r a

D D

mÈ ˘= - - + -Í ˙Î ˚

M
�

Mr

(1 +   )�
qa

2

16

�
qa

2

16

qa
2

8

Fig. 8.7 Variation of Mr and Mθ
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  2 2 2 23
16

q
r a r aÈ ˘= - + - m + mÎ ˚

i.e.                    ( ) ( )2 21 3
16r
q

M a rÈ ˘= + m - + mÎ ˚ ...eqn. 8.11

Similarly                    ( ) ( )2 21 1 3
16

q
M a rq È ˘= + m - + mÎ ˚

Variation of Mr and Mθ are as shown in Figure 8.7.

Example 8.3. Analyse a simply supported circular plate subject to udl ‘q’.

Solution. This plate may be analysed by solving plate equation with the boundary conditions w = 0 and
2

2
0 at ,

w
r a

r

∂ = =
∂

 apart from the condition 0 at 0.
w

r
r

∂ = =
∂

However, here it is solved by superposing solutions for a fixed plate subject to udl q and a plate
supported at outer edges subjected to edge moment (Refer Figure 8.8).

q/unit area

M

=

+

Fig. 8.8. Example 8.3

The end moment in fixed plate is 
2

8

qa-
. If the two cases together are to represent given case, the

condition to be satisfied is

 
2

0
8

qa
M= -

i.e.
2

8

qa
M = .

Hence, for the given case,
 w = w1 + w2
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( )
( )

( )22 2 2 2

64 2 1

q M
a r a r

D D
= - + -

+ m

( )
( )

( )
222 2 2 2

64 8 2 1

q qa
a r a r

D D
= - + -

¥ + m

( )
2

2 2 2 2 4

64 1

q a
a r a r

D

È ˘
= - - +Í ˙+ mÎ ˚

i.e.                    ( )2 2 2 25

64 1

q
w a r a r

D

+ mÈ ˘= - -Í ˙+ mÎ ˚
...eqn. 8.12

Similarly,

                 
1 2r r rM M M= +

( ) ( )2 21 3
16

q
a r MÈ ˘= + m - + m +Î ˚

( ) ( )
2

2 21 3
16 8

q qa
a rÈ ˘= + m - + m +Î ˚

( ) ( )2 21 2 3
16

q
a rÈ ˘= + m + - + mÎ ˚

( )( )2 23
16

q
a r= + m - ...eqn. 8.13(a)

                 1 2
M M Mq q q= +

( ) ( )
2

2 21 1 3
16 8

q qa
a rÈ ˘= + m - + m +Î ˚

( ) ( )2 21 2 1 3
16

q
a rÈ ˘= + m + - + mÎ ˚

( ) ( )2 23 1 3
16

q
a rÈ ˘= + m - + mÎ ˚ ...eqn. 8.13(b)

Note:

1. If µ = 0,
wcentre in simply supported plate

2 5
64

q
a

D
= ¥

= 5 times deflection in a fixed plate.
2. Mr , centre in simply supported plate

23

16
qa=

 = 3 × Mr , centre in fixed plate.
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Example 8.4. A circular plate of radius ‘a’ is having a concentric hole of radius b and is simply
supported along its outer periphery. Analyse the plate if it is subjected to

(a) Uniform moments M1 and M2 as shown in Figure 8.9.
(b) Uniform load Q0 along its inner edge.

Solution.
(a) Uniform Moments M1 and M2

Moment M1 is acting along inner periphery and M2 along the outer periphery as shown in Figure 8.9.

M2 M1 M1 M2

b

a

Fig. 8.9 Example 8.4(a)

In this case, there is no load. Hence, Qr = 0
Hence, plate equation reduces to

1
0

w
r

r r r r

È ˘∂ ∂ ∂Ê ˆ =Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚

∴
2

1
2 3log

4

C r r
w C C

a
= + +

The constants of integrations C1, C2 and C3 are to be determined by using boundary conditions.

Mr = M2 at r = a ...(1)

Mr = M1 at r = b ...(2)

and w = 0 at r = a ...(3)

Now,
2

2r
w w

M D
r rr

Ê ˆ∂ m ∂
= - +Á ˜Ë ¯∂∂

1 2

2

C r Cw

r r

∂ = +
∂

and                      

2
1 2

2 22

C Cw

r r

∂ = -
∂

∴ 1 2 1 2
2 22 2r

C C C C
M D

r r

m mÈ ˘= - - + +Í ˙Î ˚

i.e. ( ) ( )1 2
2

1 1
2r

C C
M D

r

È ˘= - + m - - mÍ ˙Î ˚
From boundary condition (1), we get
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( ) ( )1 2
2 2

1 1
2

C C
M D

a

È ˘= - + m - - mÍ ˙Î ˚
...(4)

From boundary condition (2),

( ) ( )1 2
1 2

1 1
2

C C
M D

b

È ˘= - + m - - mÍ ˙Î ˚
...(5)

∴                ( )2 1 2 2 2

1 1
1M M DC

b a

È ˘- = - - m -Í ˙Î ˚

     ( )
2 2

2 2 2
1

a b
DC

a b

È ˘-
= - - m Í ˙

Î ˚

∴  
( )
( )( )

2 2
2 1

2 2 21

M M a b
C

D a b

-
= -

- m -

Substituting it in equation (5), we get

( ) ( )
( )( ) ( )

2 2
2 11

1 22 2

1
1 1

2 1

M M a bC
M D

bD a b

È ˘-
Í ˙= - + m + ¥ - m
Í ˙- m -Î ˚

∴      ( ) ( )
( )

2
2 11

2 2
1

2

M M aC
D

D a b

È ˘-
Í ˙= - + m +
Í ˙-Î ˚

∴           
  ( ) ( )

( )
2

2 11
12 2

1
2

M M aC
D M

a b

-
+ m = - -

-

     
2 2 2 2

2 1 1 1
2 2

M a M a M a M b

a b

È ˘- + -
= - Í ˙

-Î ˚

     
2 2

2 1
2 2

M a M b

a b

-
= -

-

 
( )
( )( )

2 2
2 1

1 2 2

2

1

M a M b
C

D a b

-
= -

+ m -

From boundary condition (3),

   
2

1
30

4

C a
C= +

or  ( )( )
2 2 2

1 2 1
3 2 24 2 1

C a M a M b
C

D a b

-
= - =

+ m -
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Thus,

  

2
1

2 3log
4

C r r
w C C

a
= + +

where  

( )
( )( )

2 2
2 1

1 2 2

2

1

M a M b
C

D a b

- -
=

+ m -

( )
( )( )

2 2
2 1

2 2 21

M M a b
C

D a b

-
= -

- m -

and  ( )( )
2 2

2 1
3 2 22 1

M a M b
C

D a b

-
=

+ m -
Note: If M2 = 0

 ( )( ) ( )( )
2 2 2

1 1
1 22 2 2 2

2
,

1 1

M b M a b
C C

D a b D a b
= =

+ m - - m -

and  ( )( )
2 2

1
3 2 22 1

M a b
C

D a b
= -

+ m -

∴ ( )( ) ( ) ( )( )
2 2 2 2 22

1 1 1
2 22 2 2 2

2
log

4 11 2 1

M b M a b M a br r
w

aD a bD a b D a b
= ¥ + -

- m+ m - + m -

   
( )

( )( ) ( )
2 2 2 2 2

1 1
2 22 2

log
12 1

M b r a M a b r

aD a bD a b

-
= +

- m+ m -

i.e.
( )

( )( ) ( )
2 2 2 2 2

1 1
2 22 2

log
12 1

M b a r M a b r
w

aD a bD a b

-
= - +

- m+ m -
...eqn. 8.14

     ( )( )
2 2

1
22 2

1 1

11

M a bw r

r raD a b

∂ - mÈ ˘= +Í ˙∂ + m- m - Î ˚
...eqn. 8.15

(b) Uniform Load Q0 Along Inner Edge
Figure 8.10 shows this case

Q0

b

a

Fig. 8.10 Example 8.4(b)
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Solution: If P is total load applied,

P = 2πbQ0

At radius r shearing force per unit length of circumference is

2r
P

Q
r

= -
p

∴
1

2

w P
r

r r r r rD

È ˘∂ ∂ ∂Ê ˆ =Á ˜Í ˙Ë ¯∂ ∂ ∂ pÎ ˚

∴ 1
1

log
2

w P r
r C

r r r D a

∂ ∂Ê ˆ = +Á ˜Ë ¯∂ ∂ p

i.e. 1log
2

w Pr r
r C r

r r D a

∂ ∂Ê ˆ = +Á ˜Ë ¯∂ ∂ p

∴
22 2

1
2

1
log

2 2 2 2

C rw P r r r
r dr C

r D a r

È ˘∂ = - ¥ + +Í ˙∂ p Î ˚Ú

   
22 2

1
2log

2 2 4 2

C rP r r r
C

D a

È ˘
= - + +Í ˙p Î ˚

∴   
1 2log

2 2 4 2

C r Cw P r r r

r D a r

∂ È ˘= - + +Í ˙∂ p Î ˚

∴      
22 2 2

1
2 3

1
log log

2 4 4 8 2

C rP r r r r r
w dr C C

D a r a

È ˘
= - - + + +Í ˙p Î ˚Ú

    
22 2 2

1
2 3log log

2 4 8 8 2

C rP r r r r r
C C

D a a

È ˘
= - - + + +Í ˙p Î ˚

        
22

1
2 3log 1 log

8 4

C rPr r r
C C

D a a
È ˘= - + + +Í ˙p Î ˚

The boundary conditions to be satisfied are

Mr = 0 at r = b ...(1)

Mr = 0 at r = a ...(2)

and w = 0 at r = a. ...(3)

Now,
2

2r
w w

M D
r rr

Ê ˆ∂ m ∂= - +Á ˜Ë ¯∂∂

∴ 1 2 1 2
2 2

1 1 1 1 1
log log

2 2 2 4 2 2 2 4 2
rM C C C CP r P r

D D a D ar r

m mmÈ ˘ È ˘= + - + - + - + +Í ˙ Í ˙- p pÎ ˚ Î ˚
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From boundary condition (1), we get

( ) ( )1 2
2

1 1
0 log log 1 1

4 2 4 2 2

C CP b P b

D a D a b

mÊ ˆ Ê ˆ= + + - + + m - - mÁ ˜ Á ˜Ë ¯ Ë ¯p p ...(4)

From boundary condition (2),

( ) ( )1 2
2

1 1
0 1 1

4 2 4 2 2

C CP P

D D a

m Ê ˆ= ¥ + - + + m - - mÁ ˜Ë ¯p p ...(5)

Subtracting (5) from (4), we get

( )2 2 2

1 1
0 log log 1

4 4

P b P b
C

D a D a b a

Ê ˆ= + m - - m -Á ˜Ë ¯p p

  ( ) ( )
2 2

2 2 2
1 log 1

4

P b a b
C

D a a b

-= + m - - m
p

∴                 
2 2

2 2 2

1
log

4 1

P a b b
C

D aa b

+ m=
p - m -

...(6)

Substituting it in eqn. 4, we get

( ) ( )
2

1
2 2

1 1
0 log log 1 1 log

4 2 4 2 2 4

CP b P b P a b

D a D a D aa b

mÊ ˆ Ê ˆ= + + - + + m - + mÁ ˜ Á ˜Ë ¯ Ë ¯p p p -

∴      ( ) ( ) ( ) ( )
2

1
2 2

1 1
1 log 1 log 1

2 4 2

aC P b b

D a aa b

È ˘+ m
- + m = + m - + - mÍ ˙

p -Î ˚

  ( ) ( ) ( )
2 2 2

2 2

1
1 log 1

4 2

P b a b a

D a a b

È ˘- -= - m + + mÍ ˙p Í ˙-Î ˚

∴                  

2

1 2 2

1 2
log

4 1

P b b
C

D aa b

È ˘- m= - -Í ˙p + m -Î ˚
...(7)

From boundary condition (3),

( )
22

1
30 0 1

8 4

C aPa
C

D
= - + +

p

∴                  
2 2

3 1 4 8

a Pa
C C

D
= - +

p

   
2 2

2 2

1 1
1 log

8 1 2

Pa b b

D aa b

È ˘- m= + ¥ -Í ˙p + m -Î ˚

Particular case

As b approaches zero, it becomes a plate with central concentrated load. In this case, 2 log 0.
b

b
a
= Hence,
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2

1 2 3
1 1 1

, 0 and 1
4 1 8 2 1

P Pa
C C C

D D

- m - mÊ ˆ= - = = +Á ˜p + m p + mË ¯

∴  

2 2 21 1 1
log 1 1

8 4 1 4 8 2 1

Pr r P r Pa
w

D a D D

- m - mÊ ˆ Ê ˆ= - - + +Á ˜ Á ˜Ë ¯p p + m p + mË ¯

   
2 2

2 1 1 1 1
log 1 1

8 8 1 2 8 2 1

P r Pr Pa
r

D a D D

- m - mÈ ˘ Ê ˆ È ˘= + - - + +Í ˙ Í ˙Á ˜p p + m p + mË ¯Î ˚ Î ˚

   ( ) ( )
( )

2 2 2 2 1 1
log

8 2 1

P r
r a r

D a

È ˘+ m + - m
= + -Í ˙p + mÍ ˙Î ˚

   ( )
( )2 2 23

log
8 2 1

P r
r a r

D a

+ mÈ ˘= + -Í ˙p + mÎ ˚

8.3 CASES OF PRACTICAL IMPORTANCE
By suitable superposition of above cases many cases of practical importance can be solved. Some of
these cases are shown in Figure 8.11.

P

Fig. 8.11 Cases of Practical Importance
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For example, consider a simply supported circular plate subjected to a concentric ring load of
intensity P having radius ‘b’ (case I).

This may be looked as combination of the following three cases:
(i) A simply supported plate with concentric hole subject to ring load P.

(ii) A simply supported plate with a concentric hole subjected to uniform moment M1 along inner
edge.

(iii) A circular plate of radius ‘b’ subject to uniform moment M1 along outer edge.
The condition to be satisfied is

31 2  at .
ww w

r b
r r r

∂∂ ∂
+ = =

∂ ∂ ∂
The above condition helps in finding M1.
The above three cases are shown in Figure 8.12.

P

2a

(i)

(ii)

M1

M1

2b

(iii)

Fig. 8.12

QUESTIONS

1. Derive the equation of equilibrium for the axi-symmetrically bent circular plate.
2. Discuss the method of analysing a circular plate subject to a ring load P. Assume outer edge of the plate is

fixed.
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Plates of Other Shapes

The solution for a plate of any shape can be obtained, if a deflection function in single unknown can
be found to satisfy the boundary conditions. Then using the plate equation, it is possible to find the
unknown parameter. In this chapter, the analysis of the following shaped plates is presented:

1. Elliptic Plates with Fixed Edges subject to
(a) udl q0.
(b) Linearly varying load

2. Equilateral Triangular Plate subject to
(a) Pure moment along simply supported edge
(b) udl q0.

9.1 ELLIPTIC PLATE WITH CLAMPED EDGES AND SUBJECTED TO UDL
Figure 9.1 shows the typical elliptic plate fixed along its outer periphery and subjected to load intensity
q0. Let its length along major axis be 2a and along minor axis 2b. With the origin of cartesian coordinates
at centre of plate, the equation of the boundary line is

a a

q0

b

b

Fig. 9.1 Elliptic plate with clamped edges

Chapter

9
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2 2

2 2
1.0 0

x y

a b
+ - = ...eqn. 9.1

Along this boundary,
w = 0

and 0
w

n

∂ =
∂

. ...(1)

i.e. cos sin 0
w w

x y

∂ ∂q + q =
∂ ∂ ...(2)

The deflection function should be such that the boundary conditions 1 and 2 are satisfied.
To satisfy the boundary condition w = 0 along the edge it is necessary that w should have a term

2 2

2 2
1

x y

a b

Ê ˆ
+ -Á ˜Ë ¯  as a multiplying factor. The second boundary condition shows that even after first

differentiation w.r.t. x and y we should be left with a term 
2 2

2 2
1

x y

a b

Ê ˆ
+ -Á ˜Ë ¯ . Hence, the deflection func-

tion ‘w’, should contain the term 

22 2

2 2
1

x y

a b

Ê ˆ
+ -Á ˜Ë ¯  instead only 

2 2

2 2
1

x y

a b

Ê ˆ
+ -Á ˜Ë ¯ .

Apart from satisfying boundary conditions, the following plate equation also should be satisfied.

i.e.
4 4 4

4 2 2 4
2

w w w q

Dx x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ...eqn. 9.2

The above equation shows that, the deflection function w should not contain any term of degree
higher than four so that left hand side also becomes constant as right hand side is. So, the power of term

2 2

2 2
1

x y

a b

Ê ˆ
+ -Á ˜Ë ¯  should not be more than two. Hence, let

22 2

2 2
1

x y
w C

a b

Ê ˆ
= + -Á ˜Ë ¯ ...eqn. 9.3

It satisfies the boundary condition that w = 0 at any point on the boundary. Now

cos sin
w w w

n x y

∂ ∂ ∂= q + q
∂ ∂ ∂

2 2 2 2

2 2 2 2 2 2

2 2
2 1 cos 2 1 sin

x y x x y y
C C

a b a a b b

Ê ˆ Ê ˆ
= + - q + + - qÁ ˜ Á ˜Ë ¯ Ë ¯

Since, at any point on the boundary 
2 2

2 2
1 0,

x y

a b
+ - =  the boundary condition 0

w

x

∂
=

∂
 is satisfied.
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From plate equation,

4 4 4

4 2 2 4
2

w w w q

Dx x y y

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

Now,

  
2 2

2 2 2

2
2 1

w x y x
C

x a b a

È ˘∂
= + -Í ˙∂ Î ˚

∴
2 2 2

2 2 2 2

4 3
1

w C x y

x a a b

È ˘∂ = + -Í ˙
∂ Î ˚

3

3 4 4

4 3 2 24w C x x

x a a

∂ ¥ ¥
= =

∂

4

4 4

24w

x a

∂ =
∂

Similarly,
4

4 4

24w

y b

∂ =
∂

and                   
4

2 2 2 2 2 2

4 2 8w C C

x y a b a b

∂ Ê ˆ= =Á ˜Ë ¯∂ ∂

Hence, from plate equation,

4 2 2 4

24 2 8 24 q
C

Da a b b

¥È ˘+ + =Í ˙Î ˚

or     
4 2 2 4

1
24 16 24

q
C

D
a a b b

=
+ +

Thus,

    

22 2
0

2 2

4 2 2 4

1
24 16 24

q x y
w

a bD
a a b b

Ê ˆ
= + -Á ˜Ë ¯Ê ˆ+ +Á ˜Ë ¯

or     
24 2 2

0
2 22 4

2 4

1

24 16 24

q a x y
w

a ba a
D

b b

Ê ˆ
= + -Á ˜Ë ¯Ê ˆ

+ +Á ˜Ë ¯

...eqn. 9.4
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∴
4

0
centre 2 4

2 4
24 16 24

q a
w

a a
D

b b

=
Ê ˆ

+ +Á ˜Ë ¯

Particular Cases
If a = b, it is a clamped circular plate.

( )
4 4

0 0
centre .

24 16 24 64

q a q a
w

D D
= =

+ +
Same as we got in Chapter 8.
If a = 2b,

( )
4 4

0 0
centre 24 16 4 24 16 472

q a q a
w

D D
= =

+ ¥ + ¥

Expressions for Moments

   
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

        
2 2 2 2

4 2 2 2 2 2 4 2

3 1 3 1
4

x y x y
CD

a a b a a b b b

È ˘Ê ˆ Ê ˆ
= - + - + m + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

..eqn. 9.5(a)

  
2 2 2 2

4 2 2 2 2 4 2

3 1 3 1
4y

x y x y
M CD

a b a a b b b

È ˘Ê ˆ Ê ˆ
= - m + - + + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

...eqn. 9.5(b)

Particular Cases

(a) If a = b, it is a circular plate. In this case 
4

4 4 4

1
24 16 24 64

q qa
C

D
a a a

= =
+ +

∴ M at x = 0, y = 0

4

2 2

1 1
4

64

qa D

D a a

È ˘Ê ˆ= - ¥ - + m -Í ˙Á ˜Ë ¯Î ˚

( )
4

1 ,
16

qa= + m same as we got in Chapter 8.

(b) If a = 2b

                    4 2 4
2

1 1
24 16 24 472

4 2

q q
C

D D

a a aa

= =
+ +

Ê ˆ◊ Á ˜Ë ¯



96 THEORY OF PLATES AND SHELLS

∴
( )

4

, centre 2 2

1 1
4

472 2
x

qa
M

a a

È ˘= - ¥ - - mÍ ˙
Í ˙Î ˚

[ ]
2

1 4
118

qa= + m

[ ]
2

, centre 4
118y
qa

M = + m

Moment at the end of major axis (x = a, y = b)

       ( ) ( )

4

2 2 2 2

3 1 1 1
4

472x
qa

M
a a b b

È ˘Ê ˆ Ê ˆ= - - + m -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

            
2

.
59

qa= -

Moment at the end of minor axis, i.e. at x = 0, y = b,

       ( )
4

2 2 2 2

1 1 3 1
4

472 2
y

qa
M

a b ba

È ˘Ê ˆ= - m - + -Í ˙Á ˜Ë ¯Í ˙Î ˚
( )

( )
4

2 2

3 2

118 2

qa

a a

È ˘m -= - +Í ˙
Í ˙Î ˚

[ ]
2

8 3
118

qa= - - m

The variations of moment along major and minor axes are shown in Figure 9.2, if µ = 0.

b

b

a a

4qa
2

118

8qa
2

118

qa
2

59

qa
2

118

�

+

�

� �

+

Fig. 9.2 Variations of moments along major and minor axes
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9.2 COMPARISON OF RESULT WITH STRIP METHOD ANALYSIS
Let intensity of load taken by long strip be q1 and that by short strip be q2. Then,

q1 +  q2 = q0 ...eqn. 9.6

To ensure central deflection of the two strip same, it should be,

     q1a4 = q2b4

∴       
4

2 1 4

a
q q

b
=

In particular case of a = 2b,
       q2 = 16q1

Substituting it in eqn. 9.5, we get
      q1 + 16q1 = q0

or                       0
1 2 0

16
 and hence 

17 17

q
q q q= =

∴  
( )4 4 4

0 01
centre

2 16

384 17 384 408

q a q aq a
w

D D D

◊
= = =

Thus, deflection estimated in strip method is more than actual 
4

0 .
472

q aÊ ˆ
Á ˜Ë ¯  The overestimation is 15.7

percent.
Similarly central moment in case of strip method

          
( )2 2

20 01 2
4

24 17 24 102

q q aq a
a= = ¥ =

¥
Actual value as found by plate theory is

( )
2

1 4
118

qa + m

If µ is taken as zero, as is made in strip method, we find there is overestimation of moment in strip

method to an extent 
118

1 100 15.7 percent.
102
Ê ˆ- ¥ =Á ˜Ë ¯

9.3 ELLIPTIC PLATE SUBJECT TO UNIFORMLY VARYING LOAD IN x-DIRECTION
Figure 9.3 shows a typical fixed elliptic plate subject to a load uniformly varying load form q0 at
     x = −a to −q0 at x = a.

As discussed in the act 9.1, the deflection function should contain the term 

22 2

2 2
1

x y

a b

Ê ˆ
+ -Á ˜Ë ¯

, so that

boundary conditions are satisfied.
Loading at any point is

0 .
x

q q
a

=
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b

b

a a

q0

q0

Fig. 9.3 Elliptic Plate subject to Uniformly Varying Load

Hence, to satisfy plate equation try the function

               

22 2

2 2
1

x y
w cx

a b

Ê ˆ
= + -Á ˜Ë ¯

  

22 2 2 2

2 2 2 2 2

2
2 1 2 1

w x y x y x
C x

x a b a b a

È ˘Ê ˆ Ê ˆ∂ Í ˙= + - + ¥ + -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙∂ Î ˚

2 2 2 2 2

2 2 2 2 2 2 2 2

2 4 2
2 2 1 2 1

w x y x x y x
C x x

x a b a a a b a

È ˘Ï ¸Ê ˆ Ê ˆÔ Ô∂ Í ˙= + - + + - +Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô Ô∂ Í ˙Ó ˛Î ˚

       
2 2 2

2 2 2 2

4 2
3 1

C x y x
x

a a b a

È ˘Ê ˆ
= + - +Í ˙Á ˜Ë ¯Í ˙Î ˚

2 2 2

3 2 2 2 2 2

4 2 2
3 1 3 2

w C x y x
x x

x a a b a a

È ˘Ê ˆ∂ = + - + +Í ˙Á ˜Ë ¯Í ˙∂ Î ˚

       
2 2 2

2 2 2 2

4 12
3 1

C x y x

a a b a

È ˘Ê ˆ
= + - +Í ˙Á ˜Ë ¯Í ˙Î ˚
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4 2

4 2 2 2 2 2 4

4 2 24 4 30 120
3

w C x x C x x

x a a a a a a

∂ È ˘= + = ¥ =Í ˙∂ Î ˚

       
4 2 2

2 2 2 2 2 2 2 2

4 2 24
3

w w C C
x

x y y x a b a b

Ê ˆ∂ ∂ ∂ È ˘= = ◊ =Á ˜ Í ˙Ë ¯∂ ∂ ∂ ∂ Î ˚

  
2 2

2 2 2

2
2 1

w x y y
Cx

y a b b

Ê ˆ∂
= + -Á ˜Ë ¯∂

2 2 2

2 2 2 2 2

4 2
1

w C x y y
x y

y b a b b

È ˘∂ = + - +Í ˙
∂ Î ˚

i.e.
2 2 2

2 2 2 2

4 3
1

w Cx x y

y b a b

È ˘∂ = + -Í ˙
∂ Î ˚

∴
3

3 2 2 4

4 6 24w Cx y Cxy

y b b b

∂ = ¥ =
∂

∴
4

4 4

24w Cx

y b

∂ =
∂

∴ The plate equation is,

           
0

4 2 2 4

120 48 24 q xx x
C x

aDa a b b

È ˘+ + =Í ˙Î ˚

∴                 

0

4 2 2 4

120 48 24

q
C

aD
a a b b

=
È ˘+ +Í ˙Î ˚

∴                

22 2

0 2 2

4 2 2 4

1

120 48 24

x y
q x

a bw

aD
a a b b

Ê ˆ
+ -Á ˜Ë ¯

=
È ˘+ +Í ˙Î ˚

...eqn. 9.7

9.4 EQUILATERAL TRIANGULAR PLATE SUBJECT TO UNIFORM EDGE MOMENT
Figure 9.4 shows the typical plate. Let the uniform edge moment be M. The origin is taken at centroid
of the plate. The coordinates x and y are as shown in the figure. If we take perpendicular distance

CD = a, the sides of equilateral triangles are 
2

3

a
 (Ref. Figure 9.4).
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B

M

C
x

M

D
a/3 2a/3

M

yA

2a
3

0

Fig. 9.4 Equilateral Triangular Plate Subject to edge moment

Equation for line AB is               0
3

a
x + = ...(1)

Equation for line BC is 1 0
22 3

3 3

x y
aa

- - = ...(2)

and equation for line AC is 1 0
22 3

3 3

x y
aa

+ - = ...(3)

The boundary conditions to be satisfied are
 w = 0 at edges ...(1)

and Mx = M at edges ...(2)
The plate equation to be satisfied is

4 4 4

4 2 2 4
2 0,  since 0

w w w q q

D Dx x y y

∂ ∂ ∂+ + = = =
∂ ∂ ∂ ∂

...(3)

The plate equation indicates that no term in w should be of degree higher than three and boundary
condition 1, indicates that expression for w must include the equations of boundary lines.  Hence, let
us try

         1 1 1
3 2 3 2 32 3 3 2 3 3

a x y x y
w C x

a aa a

Ê ˆ Ê ˆ Ê ˆ= + - - + -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
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2 2

1 2
1

3 2 3 4 27

a x y
C x

a a

È ˘Ê ˆ Ê ˆÍ ˙= + - -Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

2 2

1 2 2
1

3 34 9 4 27

a x x y
C x

aa a

È ˘Ê ˆ= + - + -Í ˙Á ˜Ë ¯ Í ˙Î ˚

2
2 2

1 2

9 4 4
3

3 3 94

a xa a
C x x y

a

È ˘Ê ˆ= + - + -Í ˙Á ˜Ë ¯ Î ˚

2 2 2 2 3
3 2 2

1 2

9 4 4 4 4
3

3 9 3 9 274

ax a x ax xa a
C x xy ay

a

È ˘
= - + - + - + -Í ˙

Î ˚

3 2 2 2 31
2

9 4
3

274

C
x xy ax ay a

a

È ˘= - - - +Í ˙Î ˚

( )3 2 2 2 31
2

9 4
3

274

C
x xy a x y a

a

È ˘= - - + +Í ˙Î ˚

∴
4 4 4

4 2 2 4
0, 0  and  0

w w w

x x y y

∂ ∂ ∂= = =
∂ ∂ ∂ ∂

Hence, the plate equation is satisfied.

w = 0 along the edges is satisfied, since, at any point on edges either 0
3

a
x + =  or

            1 0  or  1 0
2 3 2 32 3 3 2 3 3

x y x y

a aa a
- - = + - = .

Another boundary condition to be satisfied is
Mn = M

i.e.
2 2

2 2
n nM M

D M
n t

È ˘∂ ∂
- + m =Í ˙

∂ ∂Î ˚

Since, 
2

2
0,nM

t

∂
=

∂
we get 

2

2
nM

D M
n

∂
- =

∂

or             cos sin cos sin
M w w

D x y x y

∂ ∂ ∂ ∂Ê ˆ Ê ˆ- = a + a a + aÁ ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

( ) ( ) ( )2 2
2

9
6 2 cos 2 3 2 sin cos 3 2 2 sin

4

C
x a y x a

a
È ˘= - a + - ¥ a a + - ¥ - aÎ ˚

( ) ( )2 2 2 2
2

9
6 cos sin 2 cos sin 12 sin cos

4

C
x a y

a
È ˘= a - a - a + a - a aÎ ˚
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[ ]2

9
6 cos2 2 6 sin2

4

C
x a y

a
= a - - a ...eqn. 9.8

Along the boundary AB, n-direction is x-direction i.e. 0 and .
3

a
xa = = -

∴ ( )2

9 9
6 3 2

4

M C C
a a

D aa
È ˘- = - - = -Î ˚

∴     
9

Ma
C

C
= ...(a)

Similarly along boundary BC, n-direction makes angle 60° with x-axis. Hence, equation 9.8 reduces to

2

9 3
3 2 6

24

M C
x a y

D a

È ˘
- = - - -Í ˙

Î ˚

       2

9
2 1

2 34 2 3 3

C x y
a

aa a

È ˘= ¥ - - -Í ˙
Î ˚

       
( )

2

9 2 2
 since 1

2 34 2 3 3

C a x y

aa a

¥ -= + =

       
9C

a
= - ...(b)

or     ,
9

Ma
C

D
=  same as in (a)

Similarly, for line AC also we get

.
9

Ma
C

D
=

Hence, if
9

Ma
C

D
=  the boundary condition Mx = M along all edges is satisfied. Hence,

( )3 2 2 2 3
2

9 4
3

274

C
w x xy a x y a

a

È ˘= - - + +Í ˙Î ˚

i.e. ( )3 2 2 2 34
3

4 27

M
w x xy a x y a

aD

È ˘= - - + +Í ˙Î ˚
...eqn. 9.9

Variation of Moments Along Line CD

 [ ]
2

2
6 2

4

w M
x a

aDx

∂ = -
∂
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 [ ]
2

2
6 2

4

w M
x a

aDy

∂ = - -
∂

[ ]
2

6
4

w M
y

x y aD

∂ = -
∂ ∂

∴   
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

  ( )6 2 6 2
4

M
x a x a

a
È ˘= - - + m - -Î ˚

  ( ) ( )3 1 1
2

M x

a

È ˘= - - m + + mÍ ˙Î ˚

  ( )3 1 1
2y
M x

M
a

È ˘= - m + + mÍ ˙Î ˚

and   ( )
2

1xy
w

M D
x y

∂= - - m
∂ ∂

  ( )3 1 .
2

y
M

a
= - m

∴ The variation of moments along DC is as shown in Figure 9.5.

M

D C

M
2

( 1 3 )� � �

(  ) Variation of Ma x

�M

D

M
2

(3      )���

C

(  ) Variation of Mb y

D C

(  ) Variation of Mc xy

Fig. 9.5 Variation of moments along DC
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9.5 EQUILATERAL TRIANGULAR PLATE SIMPLY SUPPORTED ALONG ITS EDGES
AND SUBJECTED TO UDL

Figure 9.6 shows the case considered. In this the deflection function has to satisfy the following
conditions:

  w = 0 along all boundaries ...(1)
Mx = 0 along all boundaries ...(2)

and
4 4 4

4 2 2 4
2 0

w w w

x x y y

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂ ...(3)

a
3

2a
3

q0

A

B

C
x

y

2a
3

Fig. 9.6 Equilateral triangular plate subjected to UDL

From the first condition it is obvious that there should be the term

1 1
2 23 2 32 3
3 33 3

a x y x y
x

a aaa

Ê ˆ Ê ˆ Ê ˆ+ + - - -Á ˜ Á ˜ Á ˜Ë ¯
Á ˜ Á ˜Ë ¯ Ë ¯

i.e. a term ( )3 2 2 2 34
3 .

27
x xy a x y a- - + +  The other two conditions suggest that there should be some

more terms. Krieger suggested the following function.

( )3 2 2 2 3 2 2 24 4
3

27 9
w C x xy a x y a x y a

È ˘ È ˘= - - + + + -Í ˙ Í ˙Î ˚ Î ˚

It may be noted that the term 2 2 24

9
x y a+ -  is the equation of circle passing through the corners of

the plate.
Mx = 0 means

cos sin cos sin 0
w w

x y x y

∂ ∂ ∂ ∂Ê ˆ Ê ˆa + a a + a =Á ˜ Á ˜∂ ∂ ∂ ∂Ë ¯ Ë ¯

i.e.
2 2 2

2 2
2 2

cos 2 cos sin sin 0.
w w w

x yx y

∂ ∂ ∂a + a a + a =
∂ ∂∂ ∂
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It may be verified that Mx = 0 for all three sides.
Now,

    [ ] [ ]
4

4
5 4 3 2 4 3 2 1 120 24

w
C x a C x a

x

∂
= ¥ ¥ ¥ - ¥ ¥ ¥ = -

∂

[ ]
4

2 2
3 3 2 2 3 2 2 2 2 2

w
C x x a

x y

∂ = - ¥ ¥ ¥ + ¥ ¥ - ¥ ¥ ¥
∂ ∂

           [ ]24 8C x a= - -

    [ ]
4

4
3 4 3 2 1 4 3 2 1

w
C x a

y

∂ = - ¥ ¥ ¥ ¥ - ¥ ¥ ¥ ¥
∂

           [ ]72 24C x a= - -

∴       4
w q D— =  gives

( )120 24 2 24 8 72 24
q

C x a x a x a
D

È ˘- - + - - =Î ˚

( )64
q

C a
D

- =

or         
64

q
C

aD
= -

        ( )3 2 2 2 3 2 2 24 4
3

64 27 9

q
w x xy a x y a a x y

D

È ˘ È ˘= - - + + - -Í ˙ Í ˙Î ˚ Î ˚
...eqn. (9.10)

QUESTIONS

1. Derive the expression for deflection in case of a fixed elliptic plate subject to udl. Show that strip method over
estimates the deflection by 15.7%, if a = 2b.

2. Determine the expression for deflection in a fixed elliptic plate subject to a load varying linearly from q0 at
x = −a to −q0 at x = a.

3. Determine the displacement function for an equilateral plate supported along its all edges and subjected to
uniform moment on the edges.
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Energy Method

As structure undergoes deformation due to applied load, the work done by the load is stored as strain
energy. Corresponding to each type strain there is strain energy stored in the structure. The different
strain energies to be considered are

1. Flexural strain energy.
2. Torsional strain energy.
3. Shear strain energy.
Shear strain energy is very small compared to other two. To make calculations simple this is

neglected.
While undergoing deformation strain energy is stored while potential energy is lost. But equilibrium

is reached with minimum total energy. The principal of minimum energy is used in the analysis. For this
a function is assumed so as to satisfy the boundary conditions and minimization of total energy with
respect to unknown parameters in the deflection function is used to determine the unknown parameters.

In this chapter, first expression for total energy is derived. Then a few plate problems are solved to
illustrate how energy method can be used to analyse the plate. This method is one of the approximate
methods, since, there can be a number of deflection functions which satisfy the required boundary
conditions. However, any function satisfying boundary conditions gives reasonably good results.

10.1 EXPRESSION FOR TOTAL ENERGY
Figure 10.1 shows an element of plate subject to the moments Mx, My, Mxy and Myx. Strain energy due
to all these moments are to be assembled.

(a) Strain Energy due to Mx:

1
1

2
dv = ¥ Moment × Change of angle in elemental length

2

2

1

2 x
w

M dy dx
x

Ê ˆ∂
= ¥ -Á ˜Ë ¯∂

2

2

1

2 x
w

M dx dy
x

∂= -
∂

(b) Strain Energy due to My:

Similary 
2

2 2

1

2 y
w

dv M dx dy
y

∂= -
∂

Chapter

10
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Myx

Mx

My

My
+

Mx
+

Mxy

Mxy
+

Myx

+

Fig. 10.1 Element of plate subject to various moments

(c) Strain Energy due to Mxy:

3
1

Twisting moment Change in twist
2

dv = ¥ ¥

21

2 xy
w

M dy dx
x y

Ê ˆ∂= ◊ -Á ˜∂ ∂Ë ¯
21

2 xy
w

M dx dy
x y

∂= -
∂ ∂

(d) Strain Energy due to Myx:
Similarly,

2

4
1

2 yx
w

dv M dx dy
x y

Ê ˆ∂= -Á ˜∂ ∂Ë ¯

21

2 yx
w

M dx dy
x y

∂= -
∂ ∂

∴ Total strain energy in the element = dv1 + dv2 + dv3 + dv4

2 2 2 2

2 2

1

2 x y xy yx
w w w w

M M M M
x y x yx y

È ˘∂ ∂ ∂ ∂= - + + +Í ˙∂ ∂ ∂ ∂∂ ∂Í ˙Î ˚
Since,                   Mxy

 = Myx, we get

2 2 2

2 2

1
Total S.E. in the element 2

2 x y xy
w w w

M M M
x yx y

È ˘∂ ∂ ∂= - + +Í ˙∂ ∂∂ ∂Í ˙Î ˚
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Substituting
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

2 2

2 2y
w w

M D
x y

Ê ˆ∂ ∂= - m +Á ˜∂ ∂Ë ¯

and ( )
2

1xy
w

M D
x y

∂= - - m
∂ ∂

we get

2 2 2 2 2 2

2 2 2 2 2 2
Total S.E. in the element

2

D w w w w w w

x x x y x y

È ∂ ∂ ∂ ∂ ∂ ∂= - ◊ + m + m ◊Í
∂ ∂ ∂ ∂ ∂ ∂ÍÎ

( )
2 2 2 2

2 2
2 1

w w w w

x y x yy y

˘∂ ∂ ∂ ∂+ ◊ + - m ◊ ˙∂ ∂ ∂ ∂∂ ∂ ˙̊

Representing
w

by
x

∂
∂   ′

and w
by

y

∂
∂

  .

and total strain energy in the element by dV, we get,

( )2 2 22 2 1
2

D
dV w w w w w dx dy◊È ˘¢¢ ¢¢ ¢= + + m + - mÎ ˚

( )2 2( ) 2 2 2 1
2

D
w w w w w w w dx dy◊È ˘¢¢ ¢¢ ¢¢ ¢= + - + m + - mÎ ˚

2 2( ) 2(1 )( )
2

D
w w w w w dx dy◊È ˘¢¢ ¢¢ ¢= + - - m -Î ˚

Hence, total strain energy in the plate is

 
2 2( ) 2(1 )( )

2

D
V w w w w w dx dy◊¢¢ ¢¢ ¢= + - - m -Ú Ú ...eqn. 10.1

Potential energy lost may be represented as

U qw dx dy= -Ú Ú
∴ Total energy of the plate

 I = U + V

  2 2( ) 2(1 )( )
2

D
w w w w w dx dy q w dx dy◊È ˘¢¢ ¢¢ ¢= + - - m - - ◊Î ˚Ú Ú Ú Ú ...eqn. 10.2

Example 10.1. By energy method analyse a simply supported plate of size a × b subject to uniformly
distributed load q0 over its entire surface.
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a

q0

x0

y

b

Fig. 10.2 Simply supported plate subject to udl

Solution. Figure 10.2 shows such plate. For such plate the following deflection function is suitable,
since, the boundary conditions are easily satisfied:

sin sinmn
m x n y

w a
a b

p p=ÂÂ
In the above expression amn is the unknown parameter. Total energy is given by expression 8-2.
First term in total strain energy:

( )
2 2 2 2

2 2 2 2
2 2

sin sinmn
m n m x n y

w w dx dy a
a ba b

Ê ˆp p p p¢¢ + = +Á ˜Ë ¯Ú Ú Ú Ú
Noting the following:

0

2
sin ,  for odd values of 

a
m x a

dx m
a m

p =
pÚ

0

2
sin ,  for odd values of 

b
n y b

dy n
b n

p =
pÚ

2

0

sin
2

a
m x a

dx
a

p =Ú

2

0

sin
2

b
n y b

dy
b

p =Ú

0

sin sin 0
a

m x m x
dx

a a

¢p p◊ =Ú

0

sin sin 0
b

n y n y
dy

b b

¢p p◊ =Ú
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2 2

0 0

sin sin
4

a b
m x n y ab

dx dy
a b

p p =Ú Ú
If sin θ is replaced by cos θ in the above expressions and the limits changed from −a/2 to a/2, exactly

same results are obtained.
Hence,

          

22 2 2 2
2

2 2
First term

2 4mn
D m n ab

a
a b

Ê ˆp p= +Á ˜Ë ¯ÂÂ

      ( ) ( )Second term 2 1
2

D
w w dx dy¢¢= - - m Ú Ú

( )
2 2 2 2

2 2 2
2 2

1 sin sinmn
m n m x n y

D a dx dy
a ba b

p p p p= - - m Ú Ú

( )
2 2 2 2

2
2 2

1
4mn

m n ab
D a

a b

p p
= - - m ◊ÂÂ

Similarly third term

( ) 22 1
2

D
w dx dy◊¢- m Ú Ú

( )
2 2 2 2

2
2 2

1
4mn

m n ab
D a

a b

p p= - m ÂÂ
Since, 2nd and 3rd terms are equal but opposite, strain energy is given by

24 4 2 2
2

2 28 mn
a ab D m n

V a
a b

Ê ˆp
= +Á ˜Ë ¯ÂÂ

Potential energy

U q w dx dy= -Ú Ú

sin sinmn
m x n y

q a dx dy
a b

p pÊ ˆ= - ◊Á ˜Ë ¯ÂÂÚ Ú

1,3,... 1,3,...

2 2
mn

m n

a b
q a

m n

• •

= =
= - ◊

p pÂ Â

2
1,3,... 1,3,...

4 mn

m n

aqab

mn

• •

= =
= -

p
Â Â

∴ Total Energy
I V U= +
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24 4 2 2
2

2 2 2
1,3,... 1,3,...

4

8
m

mn
m n

aa ab m n qab
D a

mnb

• •

= =

Ê ˆp= + -Á ˜Ë ¯p pÂÂ Â Â

∴               0,  gives
mn

I

a

∂
=

∂

For even terms amn = 0 and for odd terms

                

24 2 2
0

2 2 2

4 1
2 0

8 mn

q abab m n
D a

mna b

Ê ˆp + - =Á ˜Ë ¯ p

∴                 

4
0 0

2 22 2 2
6 6 2 2

2 2 2

16 16
mn

q q a
a

m n a
D mn D mn m n

a b b

= =
Ê ˆ Ê ˆ

p + p +Á ˜ Á ˜Ë ¯ Ë ¯

This is same as Navier’s solution.

Example 10.2. Analyse a fixed plate subject to uniformly distributed load q0 (Ref. Figure 10.3)

a/2

b/2

b/2

a/2

0

0 x

q0

y

Fig. 10.3 Fixed plate subject to udl

Solution. In this case, the boundary conditions to be satisfied are
w = 0 at all edges ...(1)

0 at  and  
2 2

w a a
x x

x

∂ -= = =
∂ ...(2)

0 at  and 
2 2

w b b
y y

y

∂ -= = =
∂ ...(3)

Let us select

  
2 2

1 cos 1 cos
x y

w C
a b

p pÈ ˘ È ˘= - +Í ˙ Í ˙Î ˚ Î ˚
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For simplicity series term is not selected. The function satisfies the boundary conditions w = 0 at all
edges.

 
2 2 2

sin 1 cos
w x y

C
x a a b

∂ p p pÊ ˆ Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë ¯∂

 
2 2 2

1 cos sin
w x x

C
y a b b

∂ p p pÊ ˆ Ê ˆ= + -Á ˜ Á ˜Ë ¯ Ë ¯∂

Hence,  0 at 
2

w a
x

x

∂ = =
∂

±

and  0 at 
2

w b
y

y

∂ = =
∂

± .

Thus boundary conditions (2) and (3) are also satisfied.

2 2

2 2

4 2 2
1 cos cos

w y x
C

b ax a

∂ p p pÊ ˆ= - +Á ˜Ë ¯∂

and
2 2

2 2

4 2 2
1 cos cos

w x y
C

a by b

∂ p p pÊ ˆ= - +Á ˜Ë ¯∂

It may be observed that these curvatures are not zero at x = ±a/2 and y = ±b/2. Apart from these at
both opposite edges curvatures are the same. Hence, moment conditions are also satisfied.

However, it may be observed that

3

3
0 at 

2

w a
x

x

∂ = =
∂

±

and
3

3
0  at  .

2

w b
y

y

∂ = =
∂

±

Thus, shear conditions are not satisfied. Still such a function gives sufficiently good results and a
designer can use them.

Now,  
2 24 2 2

sin sin
w x y

w C
x y ab a b

◊ ∂ p p p¢ = = ◊
∂ ∂

First term in strain energy V

     ( )2

2

D
w w dx dy¢¢= +Ú Ú

22 2
2

2 2

4 2 2 4 2 2
cos 1 cos 1 cos cos

2

D x y x y
C dx dy

a b a ba b

È ˘p p p p p pÊ ˆ Ê ˆ= + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚Ú Ú
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Noting that

2 2 2
2

2 2 2

2
cos

2 2

a b b

a b b

x a ab
dx dy dy

a- - -

p = =Ú Ú Ú

2

2

2
cos 0 since  is even.

a

a

x
dx m

a-

p =Ú

and

2 2 2
2 2 2

2 2 2

2 2 2
cos cos cos

2 4

a b b

a b b

x y a y ab
dx dy dy

a b b- - -

p p p= =Ú Ú Ú

First term in strain energy

2 4 4 4

4 4 2 2

16 16 16
0 0 2

2 2 4 2 4 4

DC ab ab ab ab ab

a b a b

È ˘p p pÊ ˆ Ê ˆ= + + + + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

2
4

4 4 2 2

3 1 3 1
16

2 4 4

DC ab
ab ab

a b a b

È ˘Ê ˆ Ê ˆ= ◊ p ¥ + ¥ +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

2 2 2
4

2 2

3 3
4 1

2 2

DC b a

ab a b

È ˘
= p ◊ + +Í ˙

Î ˚

2 4 2 2

2 2

4 3
1

2

DC a b

ab b a

È ˘Ê ˆp= + +Í ˙Á ˜Ë ¯Í ˙Î ˚

Second term in strain energy

( )
0 0

2 1
2

a b
D

w w dx dy¢¢- - m Ú Ú

( )
4

2
2 2

0 0

16 2 2 2 2
1 cos cos 1 cos 1 cos

a b
x y y x

D C dx dy
a b b aa b

p p p p pÊ ˆ Ê ˆ= - - m + +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

( )
4

2
2 2

16
1

4

ab
D C

a b

p= - - m

Third term in strain energy

( ) 22 1
2

D
w dx dy◊¢- m Ú Ú

( )
4

2 2 2
2 2

16 2 2
1 sin sin

x y
D C dx dy

a ba b

p p p= - m ◊Ú Ú
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( )
4

2
2 2

16
1

2 2

a b
D C

a b

p
= - m ◊

Noting that second and third terms are equal but opposite in sign, we get
V = first term only

2 4 2 2

2 2

4 3
1

2

DC a b

ab b a

È ˘Ê ˆp= + +Í ˙Á ˜Ë ¯Í ˙Î ˚
U = Potential Energy

q w dx dy= -Ú Ú
2 2

0
2 2

2 2
1 cos 1 cos

a b

a b

x y
q C dx dy

a b

+

- -

p pÊ ˆ Ê ˆ= - + +Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú

0q Cab= -
∴    Total Energy I = U + V

2 4 2 2

0 2 2

4 3
1

2

DC a b
q Cab

ab b a

È ˘Ê ˆp= - + + +Í ˙Á ˜Ë ¯Í ˙Î ˚

∴ 0 gives
I

C

∂ =
∂

4 2 2

0 2 2

8 3
1

2

DC a b
q ab

ab b a

È ˘Ê ˆp- + + +Í ˙Á ˜Ë ¯Í ˙Î ˚

or
2 2

0

2 2
4

2 2

3
8 1

2

q a b
C

a b
D

b a

=
È ˘Ê ˆ

p + +Í ˙Á ˜Ë ¯Î ˚

∴

2 2
0

2 2
4

2 2

2 2
1 cos cos 1

3
8 1

2

x y
q a b

a bw
a b

DC
b a

p pÊ ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯
=

È ˘Ê ˆ
p + +Í ˙Á ˜Ë ¯Î ˚

Maximum deflection occurs at middle of the plate i.e. when x = 0 and y = 0.

∴               

2 2
0

max 2 2
4

2 2

4

3
8 1

2

q a b
w

a b
D

b a

=
È ˘Ê ˆ

p + +Í ˙Á ˜Ë ¯Î ˚

For square plate a = b,
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               ( )

2 2 2 2
0 0

max 4
4

4

3 88 1 1 1
2

q a b q a b
w

DD

= =
È ˘ pp + +Í ˙Î ˚

4
00.00128

q a

D
=

Exact value is 
4

00.00126 .
q a

D

Note: The following function also satisfies all boundary conditions and hence it may be tried.

                   
2 2 2 2

1 1
x x y y

w C
a a b b

Ê ˆ Ê ˆ Ê ˆ Ê ˆ= - -Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

in which origin is at the corner of plate. It gives 
4

0
max 0.00133

q a
w

D
=  for a square plate.

Example 10.3. By energy method determine expressions for w, Mx, My,  Mxy, Qx, Qy, Vx and Vy in the
plate shown in Fig. 10.4, if it is loaded with uniformly distributed load of intensity q0.

a

b

x

y

0

Free edge

Fig. 10.4 Example 10.3

Solution. In this, the boundary conditions to be satisfied are

w = 0 and 
2

2
0

w

x

∂ =
∂

at x = 0 and x = a ...(1)

w = 0 and 
2

2
0

w

y

∂ =
∂

at y = 0 ...(2)

My = 0 and Vy = 0 at y = b. ...(3)
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These boundary conditions are satisfied if we select

  sin
x

w Cy
a

p=

∴
2

2
sin

x
w C y

aa

p p¢¢ = -

 0w =

and
2

cos
w x

w C
x y a a

◊ ∂ p p¢ = =
∂ ∂

∴  ( ) ( ) ( )2 2

0 0

2 1
2

a b
D

V w w w w w dx dy◊È ˘¢¢ ¢¢ ¢= + - - - mÎ ˚Ú Ú

( )
2 4 2

2 2 2 2
4 2

0 0

sin 2 1 cos
2

a b
D C x x

y C dx dy
a aa a

È ˘p p p p= + - mÍ ˙
Î ˚Ú Ú

( )
2 2

2 2 2 2
2 2

0 0

sin 2 1 cos
2

a b
D x x

C y dx dy
a aa a

È ˘p p p p= + - mÍ ˙
Î ˚Ú Ú

( )
2 2 3

2
2 2

0
2 1

2 3 2 2

b
D y a ab

C
a a

È ˘Ï ¸p pÍ ˙= Ì ˝ ◊ + - m
Í ˙Ó ˛Î ˚

( )
2 2 3

2
2 2

2 1
2 2 23

D b a ab
C

a a

È ˘p p
= + - mÍ ˙

Î ˚

( )
2 2

2 2
2

1
2 6

D b b
C

a a

È ˘p
= p + - mÍ ˙

Î ˚
Potential Energy

0 0

a b

U q w dx dy= -Ú Ú

0
0 0

sin
a b

x
q Cy dx dy

a

p= -Ú Ú

2

0
0

2

2

b
y a

q C
È ˘

= - Í ˙ pÎ ˚

2

0
b a

q C= -
p
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∴ I U V= +
2 2 2

2 2
0 2

1
2 6

b a D b b
q C C

a a

È ˘p
= - + p + - mÍ ˙p Î ˚

        0,  gives
dI

dC
=

2 2 2
20

2
1

6

q b a b b
CD

a a

È ˘p- + p + - mÍ ˙p Î ˚

∴
( )

2
0

2 2
2

2
1

6

q b a a
C

b
D b

a

=
p È ˘pp + - mÍ ˙

Î ˚

( )

2
0

2 2
3

2
1

6

q ba

b
D

a

=
È ˘pp + - mÍ ˙
Î ˚

∴ sin
x

w Cy
a

p
=

( )

2
0

2 2
3

2

sin

1
6

q ba x
y

ab
D

a

p
=

È ˘pp + - mÍ ˙
Î ˚

∴          
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

2

2
sin

x
DC y

aa

p p=

( )
0

2 2

2

sin

1
6

q b x
y

ab

a

p=
È ˘pp + - mÍ ˙
Î ˚

         
2 2

2 2y
w w

M D
x y

Ê ˆ∂ ∂= - m +Á ˜∂ ∂Ë ¯

( )
0

2 2

2

sin

1
6

q b x
y

ab

a

m p= -
È ˘pp + - mÍ ˙
Î ˚
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        ( )
2

1xy
w

M D
x y

∂= - - m
∂ ∂

( )1 cos
x

D C
a a

p p= - - m

( )

( )
2 2 2

2

1
cos

1
6

qba x

ab

a

- m p
= -

È ˘p p + - mÍ ˙
Î ˚

       
2 2

2
2 2

w w
w

x y

∂ ∂
— = +

∂ ∂

( )

0

2 2

2

sin

1
6

x
q by

a

b
D

a

p

= -
È ˘pp + - mÍ ˙
Î ˚

∴          ( )2
xQ D w

x

∂= - —
∂

( )

0

2 2

2

cos

1
6

x
q by

a a

b

a

p p◊ ◊
=

È ˘pp + - mÍ ˙
Î ˚

( )

0

2 2

2

cos

1
6

b
q y xa

ab

a

◊ p= ◊
È ˘p ◊ + - mÍ ˙
Î ˚

         ( )2
yQ D w

y

∂= - —
∂

  ( )
0

2 2

2

sin

1
6

q b x

ab

a

p=
È ˘pp + - mÍ ˙
Î ˚

         
xy

x x

M
V Q

y

∂
= +

∂

  ( )

0

2 2

2

cos

1
6

b
q y xa

ab

a

p=
p ◊ + - m
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xy
y y

M
V Q

x

∂
= +

∂

 ( )

( )

( )

0
0

2 2 2 2

2 2

sin 1
sin

1 1
6 6

x
q b q b xa

ab b

a a

p◊ - m p= +
È ˘ È ˘p pp ◊ + - m p + - mÍ ˙ Í ˙
Î ˚ Î ˚

 

( )

( )
0

2 2

2

2
sin

1
6

q b x

ab

a

- m p
=

È ˘pp + - mÍ ˙
Î ˚

QUESTIONS

1. Derive the expression for total strain energy in a plate.
2. Determine the expression for deflection in the plate shown in Figure 10.5. Use energy method.

 Try the function sin 1 cos
2

x y
w c

a b

È ˘p pÊ ˆ= -Á ˜Í ˙Ë ¯Î ˚
Hint :

a

b

x

y

0

Fig. 10.5
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Finite Difference Method

In this method, differential equations are replaced by finite difference equations. The plate is divided
into a grid. The deflection of intersection points of the grid lines are taken as unknowns. The plate
equation, moments, shear etc. are expressed in terms of differences in deflections of neighbouring
points. Using plate equation one equation is formed at each grid point. If any point falls outside the
plate, its deflection is replaced by those of points inside for which boundary conditions are made use.
The set of equations formed are solved to get deflection of each grid point.

In this chapter, first finite difference method Vs. classical method is discussed. Then finite difference
expressions are derived for plate equations and stress resultants. After explaining how to apply boundary
conditions two standard problems are solved and formation of equations for some more cases are
presented.

11.1 FINITE DIFFERENCE METHOD Vs. CLASSICAL METHOD
1. In classical method, exact equations are formed and exact solutions are obtained, whereas in finite

difference method, exact equations are formed but solved approximately.
2. Using classical method solutions are obtained for few standard cases whereas solutions can be

obtained for all problems by finite difference method.
3. Whenever the complexities are encountered, classical method makes the drastic approximations

and then looks for the solution. Various complexities encountered may be grouped into the
following:

(a) Shape
(b) Boundary conditions
(c) Loading.

(  ) Irregular shapea (  ) Irregularboundary conditionsb (  ) Irregular loadingc

Fig. 11.1 Complexities in plate analysis

Chapter

11
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Figure 11.1 shows typical complexities in the plate analysis. To get the solution in these cases
rectangular shapes, same boundary conditions along a side and regular equivalent loads are assumed.
In finite difference method, no such assumptions are made. The problem is treated as it is.

4. If material property is not isotropic, solutions become difficult in classical method. Only a few
simple cases have been solved successfully. Finite difference method can handle plates with
anisotropic properties without any additional difficulty.
Thus, classical method is good for standard cases while finite difference method is good for the
problems with complexities in shape, boundary conditions and loading.

11.2 FINITE DIFFERENCE FORM FOR DIFFERENTIAL EQUATIONS
Let ‘O’ be the point under consideration (Fig. 11.2) and ‘h’ be the mesh length. The forward points are
referred as 1, 2, 3… and the backward points as −1, −2, −3... . Thus, the deflection of point ‘O’ is
w0 and at points 1, 2 and 3 the defections are w1, w2, w3. Similarly, deflections at points −1, −2, −3 are

w−1, w−2, w−3. The slope 
w

x

∂
∂

 at point O is approximated as

0

w

x

∂Ê ˆ
Á ˜Ë ¯∂

= Average slope at ‘O’ towards its left and right side

0 1 1 01

2

w w w w

h h
-- -È ˘= +Í ˙Î ˚

w1 w2 w3

w0
w

�1
w 2�

w 3�

w4 w5

w
3

w
2

w
1

w
0

w
�
1

w
2

�
w

3
�

(  ) Plana

(  ) Cross section along x-axisb

0

1

2

3

�1

�3

h

h
h h h

h

h

h

�2

1 2 3 4 5�1�2�3

y-direction

(
)

C
ro

ss
se

ct
io

n
al

on
g

y-
ax

is
c

x-direction

Fig. 11.2
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( )1 1
1

2
w w

h -= -

This finite difference form of 
w

x

∂
∂

 may be remembered in the form

 
1

2h

�w

�x 0

= �1 0 1
w

…eqn. (11.1)

in which double circled point refers to the point under consideration.

Similarly, 
2

2

w

x

Ê ˆ∂
Á ˜Ë ¯∂

 at point ‘O’ may be approximated as,

                 
2

2

w w

x xx

∂ ∂ ∂Ê ˆ= Á ˜Ë ¯∂ ∂∂
 = rate of change of slope between points h/2 and −h/2.

1 0 0 11 w w w w

h h h
-- -È ˘= -Í ˙Î ˚

1 0 1
2

2w w w

h
- - +

=

 
1

h
2 1 �2=

w

1 …eqn. (11.2)

It may be noted that 
2

2

w

x

∂
∂

 could have been taken as rate of change of slope between the points h and

−h also. But in that case, as the points are far away approximation is more. Since, the slopes at middle
of the range 0 to 1 and −1 to 0 could be expressed in terms of deflections at grid points, equation 11.2
is more preferred form. Similarly

           
3 2

3 2
0

w w

xx x

Ê ˆ Ê ˆ∂ ∂ ∂=Á ˜ Á ˜Ë ¯ Ë ¯∂∂ ∂

2 2

2 2
1 1

1

2

w w

h x x -

È ˘Ê ˆ Ê ˆ∂ ∂= -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Í ˙Î ˚

           
3

0 1 2 2 1 0
3 2 2

0

2 21

2

w w w w w ww

hx h h
- -Ê ˆ - + - +∂ È ˘= -Á ˜ Í ˙Ë ¯∂ Î ˚

2 1 1 23

1
2 2

2
w w w w

h
- -= - + - +È ˘Î ˚
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�1 02 �2 1

w

1

2h
3

= …eqn. (11.3)

The above expression may be derived conveniently by the following pattern operation also.

           
3 2

3 2
0

w w

xx x

Ê ˆ Ê ˆ∂ ∂ ∂=Á ˜ Á ˜Ë ¯ Ë ¯∂∂ ∂

�1 0 1 1 11

h
2

w

1

2h
= �2

1

2h
3

= �1 �12

0 0+ 0

w

�2 1+ 1

1

2h
3

= �1 2 0 �2 1

w

Note in the above operation, first ‘O’ times second pattern is placed (second row). Then −1 times
second pattern is placed at one step backward (refer first row) and then 1 times second pattern is placed
a step forward (refer third row).

Using pattern operation techniques 
4

4

w

x

∂
∂

 may be derived as shown below:

4 2 2

4 2 2
0

w w

x x x

Ê ˆ Ê ˆ∂ ∂ ∂=Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂

1

h
2

�2�2= 1 1 1 1
w

1

h
2

1

h
4

=

1�21

w

+

1 �2 1

�2 4 �2+

1

h
4

= 1 �4 �46 1
w

…eqn. (11.4)
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It may be observed that odd differentiations are having anti-symmetric patterns and even
differentiation terms are having symmetric pattern.

Similarly, the differentiations w.r.t. y may be expressed by turning the patterns of differentiations
w.r.t. x by 90°. Thus,

�1

0

1
w

1

2h
=

�w

�y 0    

1

�2

1
w

1

h
2=

�
2
w

�y
2

�
3
w

�y
3

1

2h
3

=

�1

�2

2

0

1

w

�
4
w

�y
4

1

h
4

=

w

1

�4

�4

6

1

and

11.3 FINITE DIFFERENCE FORM FOR PLATE EQUATION
We know,

1 1�2
�

2
w

�x
2

=
1

h
2

�
2
w

�y
2

1

�2

1

1

h
2

=

w

and
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∴
2 2

2
2 2

w w
w

x y

∂ ∂— = +
∂ ∂

1

h
2

= 1 �2 1 +
1

h
2

1

�2

1
w

w

1

1 1

1

�4

w

1

h
2

=

∴ ( )4 2 2w w— = — —

     

1

h
2

1

h
2

1

1 1

1

�4

1

1 1

1

�4=

w

w

1

1+1 1+1

1+1 1+1

�4
�4

�4
�4

�4
�4

�4
�4

1 1

1

1
1+16+1

1

1

h
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1

2 2

�8

�8

�8

1

1

1

22

�820

w

1

h
4

=

Hence, the plate equation is,

1

2 �8

�8�8

2

2

1 20 1

2 �8

1

w

=
qh

4

D
…eqn. (11.5)
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11.4 EXPRESSIONS FOR STRESS RESULTANTS

                 
2 2

2 2x
w w

M D
x y

Ê ˆ∂ ∂= - + mÁ ˜∂ ∂Ë ¯

=
�D

h
2

1

1

1

1�2 �2+ �

w

w

�

11 �������2 2

�

�D

h
2

=

Similarly,

w

1

� �

1

�������2 2�D

h
2

My =
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( ) ( )
2

1 1xy
w w

M D D
x y x y

∂ ∂ ∂Ê ˆ= - - m = - - m Á ˜∂ ∂ ∂ ∂Ë ¯

       

= (1 )� � �D 1

2h

1
2h

�1 0 1

�1

0

1

w

       

1

1

w

�1

�1

0

0

0

0 0
� � �D(1 )

4h
2

=

It may be easily seen that,

  ( )2
xQ D w

x

∂= - —
∂

       

�1

�1

�1

�4

0

0

0

1

4 1

1

w

=
�D

2h
3
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                  ( )x x xyV Q M
y

∂= +
∂

�2
+�

�2
+�

�1 0

0

6
����2

2��

2��0

�6
+2� 1

w

=
�D

2h
3

By rotating Qx and Vx patterns by 90°, we get finite difference patterns for Qy and Vy.

11.5 APPLYING BOUNDARY CONDITIONS
While forming the plate equations at points close to boundary, many points fall outside the plate. The
deflections of such imaginary points should be replaced by the deflections of the points on the plate.
For this boundary conditions are to be used. In this article, the expressions for the deflections of
imaginary points in terms of real points are derived for the following boundaries:

(a) Simply supported edge
(b) Fixed edge
(c) Free edge

(a) Simply supported edge:

2

0 31

4

Edge under consideration

Fig. 11.3
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Consider the point ‘O’ shown in Fig. 11.3. Since, it is on a simply supported edge

Mx|0 = 0

�

�

1 1
�2
����2

w

� D

h
2 = 0.

Since, displacements are zero along simply supported edge, we get

w1 + w3 = 0

i.e. w1 = −w3

w3
w1

i.e. displacement of imaginary point is equal to negative of that of image point.

(b) Fixed edge:

If edge under consideration (Refer Fig. 11.3) is fixed, the boundary conditions are w = 0 and 0
w

x

∂
=

∂
,

along the edge.

0
0

w

x

∂
=

∂

i.e.
1

2h
� �1 0 1

w

= 0

∴ −w1 + w3 = 0

i.e. w1 = w3

w
�1 w1

i.e. in this case, displacement of imaginary point is equal to displacement of image point.

(c) Free edge:
At free edge the boundary conditions are

Mx = 0  and  Vx = 0
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Mx = 0 gives  

w

�

1 1�������2 2

�

= 0

i.e.       w1 =

��

��

2+2� �1

w

Vx = 0 gives

w

= 0

�2
+�

�2
+�

0

0

0

2��

2��

�6
+2�

6
����2 1�1

2�� 0

0

0

�6
+2�

2�� �2
+�

6 2���� �1

w

wimaginary =

�2
+�

Note carefully that double circled point is under consideration.
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Example 11.1 A fixed plate of size 4h × 4h is subjected to uniformly distributed load q0 over its entire
surface. Taking grid size as h × h determine.

(i) Deflection at the centre of the plate
(ii) Moment at the centre of the plate take µ = 0.3

Solution: Making use of symmetry, there are only three unknown displacements w1, w2 and w3 as
shown in Fig. 11.4. Displacements are zero along the support.

a = 4h

a = 4h

3

3

32

2 1 2

2 3

Fig. 11.4 Example 11.1

Since, slope is zero at fixed edges, we get

�1 0 1
w

= 0

∴ w−1 = w1

i.e. displacement of imaginary point is equal to displacement of image point. Keeping these points in
mind, plate equations can be written for the points 1, 2 and 3. The plate equation is

1

1

1

1

2 2

2 2

�8

�8

�8

�8 20

w

=
qh

4

D
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Hence, the plate equation at point 1 is

20w1 − 4 × 8w2 + 4 × 2w3 = 
4

0q h

D

i.e. 20w1 −32w2 + 8w3 = 
4

0q h

D
…(1)

The plate equation at point 2 is,

20w2 − 8w3 − 8w3 − 8w1 + 2w2 + 2w2 + w2 + w2 = 
4qh

D

i.e. −8w1 + 26w2 − 16w3 = 
4qh

D
…(2)

The plate equation for point 3 is,

20w3 − 8w2 − 8w2 + 2w1 + w3 + w3 + w3 + w3 = 
4

0q h

D

i.e. 2w1 − 16w2 + 24w3 = 
4

0q h

D
…(3)

Solving above three simultaneous equations, we get

w1 = 0.4607
4

0q h

D

w2 = 0.3090
4

0q h

D

and w3 = 0.2093
4

0q h

D

Thus, deflection at centre = 0.4607
4

0q h

D
 = 0.0018

4
0q a

D

Moment at centre

     

1 1

�

�

�������2 2

w

= �D

h
2
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   ( ) 1 2 2 2 22
2 2

D
w w w w w

h
È ˘= - - - m + m + + m +Î ˚

   [ ]
4

0
2

2.6 0.4607 2.6 0.3090
q hD

Dh
= - - ¥ + ¥

       = 0.3944 q0h2 = 0.02465 q0a4

Example 11.2 Analyse a simply supported plate of size 4h × 4h which is subjected to udl q0. Take grid
size h × h and determine.

(a) Central deflection
(b) Moment at the centre if µ = 0.3.

Solution. Due to symmetry there are only three unknown grid point displacements as shown in
Fig. 11.5. It is to be noted that

1. Displacements of points on boundary = 0

2. Moment about boundary = 0.

3 2 3

2 1 2

3 2 3

Fig. 11.5 Example 11.2

i.e. � D

h
2

0

�

�

1 1

w

= 0
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Since, displacements are zero about boundary line this condition gives displacement of an imaginary
point is equal to negative of displacement of image point.

Keeping these two points in mind, plate equation is written for the three grid points.

For first point, 20w1 − 4 × 8w2 + 4 × 2w1 = 
4

0q h

D
…(1)

For second point, 20w2 − 8w3 − 8w1 − 8w3 + 2w2 + 2w2 + (−w2) + w2 = 
4

0q h

D

i.e. − 8w1 + 24w2 − 16w3 = 
4

0q h

D
…(2)

For point three,

20w3 − 8w2 − 8w2 + 2w1 − w3 − w3 + w3 + w3 = 
4

0q h

D

i.e. 2w1 − 16w2 + 20w3 = 
4

0q h

D
 …(3)

Solving simultaneous equations 1, 2 and 3, we get

w1 = 1.0313 
4

0q h

D

w2 = 0.75 
4

0q h

D

and w3 = 0.5469 
4

0q h

D

Thus, deflection at centre = w1 = 1.0313 
4

0q h

D

                    = 0.0645
4

0q a

D
Moment at centre, if µ = 0.3 is given by

                  

= � D

h
2

�������2 2

�

�

1 1

w



136 THEORY OF PLATES AND SHELLS

( ) 1 2 2 2 22
2 2

D
w w w w w

h
È ˘= - - - m + m + + m +Î ˚

1 22
2.6 2.6

D
w w

h
= - - +È ˘Î ˚

[ ] 2
02.6 1.0313 2.6 0.75 q h= - ¥ + ¥

2 4
0 00.7314 0.0457q h q a= =

Example 11.3  Formulate finite difference equations for the plate shown in Fig. 11.6. Take grid size
h × h.

1 2

3 4 5

6 7 8

Fig. 11.6 Example 11.3

Solution. In this problem, deflections of all interior grid points are different. Hence, eight separate
equations are to be written. Noting that all edges are fixed

w = 0 at points on edges

and deflection of imaginary point = Deflection of image point.
Keeping these points in mind the eight equations are written.
For point 1,

20w1 − 8w2 − 8w3 + 2w4 + w1 + w1 + w6 = 
4

0q h

D

22w1 − 8w2 − 8w3 + w6 = 
4

0q h

D
…(1)
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For point 2,

20w2 − 8w4 − 8w1 + 2w5 + 2w3 + w2 + w7 = 
4

0q h

D

i.e. −8w1 + 21w2 + 2w3 − 8w4 + 2w5 + w7 = 
4

0q h

D
…(2)

For point 3,

20w3 − 8w1 − 8w4 − 8w6 + 2w2 + 2w7 + 2w5 + w3 = 
4

0q h

D

i.e. −8w1 + 2w2 + 21w3 − 8w4 + 2w5 − 8w6 + 2w7 = 
4

0q h

D
…(3)

For point 4,

20w4 − 8w2 − 8w5 − 8w7 − 8w3 + 2w1 + 2w8 + 2w6 = 
4

0q h

D

i.e. 2w1 − 8w2 − 8w3 + 20w4 − 8w5 + 2w6 − 8w7 + 2w8 = 
4

0q h

D
…(4)

For point 5,

20w5 − 8w8 − 8w4 + 2w2 + 2w7 + w5 + w3 = 
4

0q h

D

i.e. 2w2 + w3 − 8w4 + 20w5 + 2w7 − 8w8 = 
4

0q h

D
…(5)

For point 6,

20w6 − 8w3 − 8w7 + 2w4 + w1 + w8 + w6 + w6 = 
4

0q h

D

i.e. w1 − 8w3 + 2w4 + 22w6 − 8w7 + w8 = 
4

0q h

D
…(6)

For point 7,

20w7 − 8w4 − 8w8 − 8w6 + 2w3 + 2w5 + w2 + w7 = 
4

0q h

D

w2 + 2w3 − 8w4 + 2w5 − 8w6 + 21w7 − 8w8 = 
4

0q h

D
...(7)

For point 8,

20w8 − 8w5 − 8w7 + 2w4 + w8 + w8 + w6 = 
4

0q h

D

2w4 − 8w5 + w6 − 8w7 + 22w8 = 
4

0q h

D
…(8)
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11.6 MODIFICATION OF FINITE DIFFERENCE PLATE EQUATION TO APPLY IT ON
A FREE EDGE

Fig. 11.7 Modifying plate equation so as to apply at point ‘O’

The plate equation for any point is

1

1

1

1

2 2

2 2

�8

�8

�8

�8 20

w

=
q h0

4

D
4

When this equation is to be applied at point, four points fall away from the plate, one at distance 2h
and three at distance h from free edge of the plate. The plate equation can be modified making use of
the boundary conditions that

Vx = 0
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and Mx = 0 at free edges.
Using the boundary condition Vx = 0

� �2 + 0 2 ���

6 2� � � � �6 20�1 1

� �2 + 2 ���0

w

= 0.

i.e.

� �2 + 0 2 ���

6 2� � � � �6 20 1

� �2 + 2 ���0

w

w =

Substituting it in plate equation, we get

� �2 + 0 2 ���

6 2� � � � �6 20 1

� �2 + 2 ���0

1

1

1

2 2

2 2

�8

�8

�8

�8 20

w

=
q h0

4

D
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i.e.

1

w

2

4 ���

� � �14 2

4 ���

�

�

�8

�8

20

1

� � �2 2 =
qh

4

D

From boundary condition Mx = 0, we get

���

2 2� � 1

���

w

Displacement of imaginary point =

Applying this condition to the three points which are at distance ‘h’ from free edge on fictitious plate
we get

=
qh

4

D

1

1

�8

��
2

��

��
2

��
2

��
2

��

4 ���

�14 2� �

��( 2 2 )� � �

2

4 ����8

20

w

� �(2 + 2 )

2 + 2�

� �(2 + 2 )

(2 + 2 )� ( 2 2 )� � �

��( 2 2 )� � �
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1 ���
2

� � �8 + 4 + 4
2

16 8 6� � � �
2

� � �8 + 4 + 4
2

1 ���
2

w

4 2� �

� �12 + 4

4 2� �

2 =
qh

4

D

QUESTIONS

1. Derive the plate equation in finite difference form.
2. Modify the plate equation so as to apply it on a boundary with free edge.
3. Write plate equations in finite difference form for the plate shown in Fig. 11.8.

[Hint: Note due to symmetry w1 = w7, w2 = w8, w3 = w9]

B C

1 2 3

4 5 6

7 8 9

A D

Fig. 11.8 Question No. 3

4. In the plate shown in Fig. 11.8, if the edge is simply supported, write plate equations.
[Hint: Note due to anti-symmetry w1 = w9, w2 = w6, w4 = w8]
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A Folded Plate Roofs

Folded plate roof is a structure which is composed of a number of plates monolithic along their
common longitudinal edges. It may be looked as a plate folded at several longitudinal lines. The roof
unit is supported at ends by thin but deep frames. Such support may be treated as simple support
(Fig. 12.1). The end frames in turn are supported by columns. Figure 12.2 shows commonly used folded
plate roofs.

(  ) Prismatica

(  ) Vee-typeb

(  ) Trough typec

(  ) North lightd

L

End frame

Fig. 12.1 A typical folded plate roof Fig. 12.2 Types of folded plate roofs

Folded plate roofs are known as hipped plates, prismatic shells and faltwerke. By giving folds to
the plate, bending moment is reduced in the plate and considerable load is transferred as membrane
compressions. Hence, they can be used economically to cover a column free span of 20 to 25m.
However, folded plates are not as efficient as shells in transferring loads by membrane compression.

Chapter

12
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12.1 ADVANTAGES AND DISADVANTAGES OF FOLDED PLATES OVER SHELLS
The advantages of folded plates over shells are:

1. Form work required is relatively simple.
2. Movable form can be employed.
3. Design involves simpler calculations.

The disadvantages of folded plates over shells are:

1. Folded plates consume a little more material than shells.
2. Form work can be removed after 7 days of concreting while in case of shells it may be removed

after 3 days only.

12.2 HISTORICAL NOTE
Ehler of Germany published first paper on folded plate bunkers in 1930. He assumed the joints at folds
as hinged. In 1934, Gruber put forward a rigorous theory which took into account the rigidity of the
joints and the relative displacement between them. In the course of next few years, many European
engineers made contributions to the subject—noteworthy among them being by Cramer Ohlig and
Girkman. The methods developed were based on theory of elasticity. Hence, they involve differential
and algebraic equations.

After world war II, American took interest in folded plate analysis. In 1947, Winter and Pei published
stress distribution procedure. It ignored relative displacements of the joints. In 1954, Gaafer published
a simple method for analysis, which took into account joint displacements also. Later on Simpsons
improved it and now that method is known as Simpson’s method. Girkmans method, improved by
Whitney is known as Whitney’s method.

12.3 ASSUMPTIONS
The following assumptions are made in the analysis of folded plates:

1. It consists of rectangular plates each being of uniform thickness.
2. The structure is monolithic and the joints are rigid.
3. The material is elastic, homogeneous and isotropic.
4. The length of each plate is more than twice its width.
5. In all plates, plane section remains plane even after deformation.

12.4 BEHAVIOUR OF FOLDED PLATE ROOFS
Load transfer in folded plate roofs consists of slab action and plate action.

12.4.1 Slab Action
Each slab may be assumed to bend as simply supported slab between the adjacent folds. It results into
the reactions at joints (folds). But actually the slab is continuous over folds. Hence, there are end
moments in transverse direction. Taking joint moments as unknowns, joint-reactions may be found in
terms of unknown moments. Thus, total reactions at joints if they are supported externally are the
algebraic sum of reactions due to load plus those due to transverse moments. Figure 12.3 shows slab
action of a typical folded plate roof.
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bn

bn 1�

M n
1�

Mn 1�

Mn

qn

qn 1�

(n 1)� Rn 1�

Rn

Rn 1�

(n
1)

�

qn 1�

qn
(n)

b  - width of nth platen

q  - Angle made by nth plate with horizontaln

Fig. 12.3

12.4.2 Plate Action
Actually there is no external supports at folds. Hence, the joint reactions found due to slab action
are reversed and applied as joint force. This joint loads get distributed as plate load as shown in
Figure 12.4.

Rn 1�

Rn Rn 1�

P�(n 2)�

P�(n 1)�P�n

P�
(n 1)�

P�
(n 1)�

P�
n

Fig. 12.4

Pn 1�

P n
2

�

Pn

P
n 1�

n 2�

n 1�
n

Tn 2�

Tn 1� Tn

Fig. 12.5
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Assuming each plate is simply supported on end frames, bending moment in the plate due to plate
loads can be found. This plate bending results into discontinuity at joints. Since, the joints are rigid, this
discontinuity is not possible. This has happened because longitudinal shears developed at joints are
ignored. Let the longitudinal shears developed be as shown in Fig. 12.5.

Taking longitudinal shears also as unknowns, equations are developed to find stresses at edges of
each plate. Using compatibility conditions, unknown transverse moments and longitudinal shears are
determined.

There are two different methods for the analysis of plate. They are known as Whitney’s method and
Simpson’s method. In Whitney’s method simultaneous equations are solved to get transverse moments
and longitudinal shears whereas in Simpson’s method effect of transverse moments is taken care by
moment distribution procedure while the effect of longitudinal shears is taken care by a stress distribu-
tion procedure. These methods are explained in this chapter.

12.5 WHITNEY’S METHOD
At each joint, there are two unknowns—a transverse moment and a longitudinal shear. Hence, if there
are N number of joints (i.e. N + 1 number of plates), there are 2N number of unknowns. These unknowns
at joints n − 1, n and n + 1 are shown in Fig. 12.6.

The transverse moments at joint 1 and joint N may be taken as those due to cantilever action of 1st
and n + 1th plate. Hence, two of the 2N unknowns are found. Thus, number of unknown reduce to
2N−2. In Whitney’s method, N-number of equations are obtained by equating stresses in adjoining
plates at common edges.

Another compatibility condition to be satisfied is at any joint the angle between the two adjacent
plates should not change. This condition may be applied from joint 2 to joint N−1 to get N−2 equations.

Thus, the compatibility of stresses and transverse rotations gives 2N−2 equations. Hence, 2N−2
unknowns, namely, M2, M3, ..., MN−1 and T1, T2, ..., TN can be determined.

(n–1)

Mn – 1

(n)

Tn–1

Mn

Tn

(n+1)

Tn+1

Tn+2

Tn+3

Mn+1

Mn+2

Mn+3

(n+2)

(n+3)

Fig. 12.6 Unknowns in Whitney’s method

The step by step procedure of analysis of folded plates by Whitney’s method is given below:
Step. 1: Express the loading in the Fourier form:
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0
4

( ) sin
m x

q x q
m a

p=
pÂ

If only first term is considered,

0
0

4
( ) sin sin

q x x
q x q

L L

p p= =
p

...eqn. 12.1

Step 2: Assuming plates are simply supported along the folds, find reactions (Refer Fig. 12.7)

n 1�

qn

n
qn 1�

qn 2�

n   1�

+�

�

Rn+1 Rn+1
+

Rn
+

�
Rn

�

Fig. 12.7 Load and reactions at mid span due to loads for slab action

1 1 sin
2

n n n n
n

q b q b x
q

L
+ ++ p= ...eqn. 12.2

Step 3: To be compatible with sinusoidal loading transverse moments should vary in the sinusoidal
form. Then the reaction at joint n due to transverse moments (Refer Fig. 12.8) are

1 1

1 1

sin
cos cos

n n n n
n

n n n n

M M M M x
R

b b L
- +

+ +

- - pÈ ˘¢¢ = +Í ˙f fÎ ˚
...eqn. 12.3

Step 4: Calculate total reaction at the imaginary support along the folds.

n n nR R R¢ ¢¢= + ...eqn. 12.4

Mn 1�

Mn 1�

Mn

M Mn n 1�
�

b cosn+1 n+1�

M Mn n 1�
�

b  cosn n�

Fig. 12.8 Reactions due to transverse moment at mid span at joint n

Step 5: Actually there is no external support at folds. Hence, the joint reaction Rn acts as joint load in
the downward direction. These joint loads are transferred to the plates meeting at joints causing each
plate to bend as a beam spanning between the end traverses.
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R sinn
�x
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(n) �n

(c)

Pn Pn+1

�
�n

�n+1

�n

( ) R and its components at joint na n (  ) Vector diagramb

Fig. 12.9 Finding components of Rn

Referring to Fig. 12.9, if ab represents the joint load Rn, its components in the direction of nth and
nth plate are obtained by traversing from a to b in the directions of nth plate and (n+1)th plate, ac
represents the component in nth plate while cb represents the component in (n+1)th plate. From triangle
of forces abc, we get

  ( )1 1

sin
sin 90 cos sin

sin sin

n
n

n n n
n n

x
R R xLP ac

L+ +

p
p¢ = = + f = f ◊

g g

( )1

sin
sin 90 cos sin

sin sin

n
n

n n n
n n

x
R R xLP cb

L+

p
p¢¢ = = - f = f ◊

g g

Similarly, if we resolve the joint load Rn−1 at joint n − 1, the load Pn″ is given by

1

1
1

sin
cos

sin

n

n n
n

x
R

LP
r

-

-
-

p

¢¢= f

∴ Total force in nth plate from n to n − 1 direction is (Ref. Fig. 12.5)

1 1
1

1

cos
cos sin

sin sin
n n n

n n n n
n n

R R x
P P P

L
+ -

-
-

f pÈ ˘¢ ¢¢= - = - ◊ fÍ ˙g gÎ ˚
...eqn. 12.5

where γn is the angle of deviation of (n + 1)th plate from the direction of nth plate. From equation 12.5,
plate loads in all plates may be found.
Step 6: Since, the longitudinal variation of plate loads are in sinusoidal form, the plate moment also
should be in the sinusoidal form. Thus,

          
2

2
sinpn n

L x
M P

L

p¢ =
p

...eqn. 12.6

Step 7: The moment due to the longitudinal shears Tn−1 and Tn at the centre of the plate (Refer
Fig. 12.10) is

          ( )1 sin
2
n

pn n n
b x

M T T
L-
p¢¢ = + ◊ ...eqn. 12.7
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nth
plate

(n 1)th plate

�

T n 1�

Tn

T n+1

Fig. 12.10

It may be noted that Mpn to be in sin
x

L

p
 form, Tn also should vary in sinusoidal form.

Step 8: Total plate moment is

( )
2

12
sin

2
n n

pn n n

P L b x
M T T

L-
È ˘ p= + +Í ˙
pÎ ˚

...eqn. 12.8

Step 9: Writing tensile stress as positive, the fibre stress in nth plate at common edge n is,

      ( )
2

1
12 2

6
sin sin

2
n n n n

n n
n nn n

P L b T Tx x
T T

L b h Lb h
-

-
È ˘ -p p= - + + +Í ˙

pÎ ˚
...eqn. 12.9

where first part is due to flexure while second part is due to direct force (Tn+1 − Tn).
Similarly, the tensile stress at the same fibre calculated from (n + 1)th plate is

      ( )
2

1 1
1 12 2

1 11 1

6
sin sin

2
n n n

n n n
n nn n

b T TL x x
P T T

L b h Lb h
+ +

+ +
+ ++ +

È ˘ -p p= - + +Í ˙
pÎ ˚

...eqn. 12.10

To maintain stress compatibility, equation 12.9 should be equal to equation 12.10. Hence,

      ( )
2

1
12 2

6

2
n n n

n n n
n nn n

b T TL
P T T

b hb h
-

-
È ˘ -
- + + +Í ˙

pÎ ˚

              ( )
2

1 1
1 12 2

1 11 1

6

2
n n n

n n n
n nn n

b T TL
P T T

b hb h
+ +

+ +
+ ++ +

È ˘ -
= - + +Í ˙

pÎ ˚
...eqn. 12.11
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Applying the above compatibility condition from joint 1 to joint N, N equations can be assembled.
Equation 12.11 is known as Equation of Three shears.
Step 10: Rotation of nth plate and (n+1)th plate due to various causes are,
(a) Due to slab action, for applied loads

     
3

, 1
1

cos sin
24

n n
n n n

n

q b x

EI L-
pa = - f

¢

     
3

1 1
, 1 1

1

1
cos sin

24
n n

n n n
n

q b x

EI L
+ +

+ +
+

pa = f
¢

where 31
,

12n nI h¢ =  moment of inertia per unit length of plate.

(b) Due to slab action, for transverse moments

    , 1 12 sin
6

n
n n n n

n

b x
M M

EI L- -
pb = +È ˘Î ˚¢

    
1

, 1 1
1

2 sin
6

n
n n n n

n

b x
M M

EI L
+

+ +
+

pb = - +È ˘Î ˚¢

(c) Slope due to plate deflection:
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n
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n
b

n
1
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e n

�n

n 1�

n 1�

�n+1

f

c

Fig. 12.11

Referring to Fig. 12.11, let ∆ be the free deflection of plates. Then,
       ∆n−1 = n − 1, a

           ∆n= n −1, b = n, d

        ∆n+1 = n, e

Since, the joints are rigid, common edges cannot be at two different points, in other words, free
expansion of plates is not possible. Hence, joint n−1 moves to the point c and the joint n moves to the
point f, which are located by dropping perpendiculars from a, b and e, d respectively. Line cf shows the
position of the plate after deflection.
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(i) To find bc:
From triangle n − 1, b, g, we get

1 1

1,
1,

cos cosn n

n b n
n g

- -

- D
- = =

g g

∴ a, g = n − 1, a — n − 1, g

     1
1cos

n
n

n
-

-

D
= D -

g

∴ 1
1 1 1

1

sin sin cos
n

n
n n n

ag
gc -

- - -

DÈ ˘
= = D -Í ˙g g gÎ ˚

∴  bc = bg + gc

    1 1
1 1

1
tan

sin cos
n

n n n
n n

- -
- -

DÈ ˘= D g + D -Í ˙g gÎ ˚
(ii) To find df:

1

cos cos
n

n n

en
nk +D

= =
g g

∴ dk = dn − nk

   
1

cos
n

n
n

+D
= D -

g

∴ df = dk cot γn

   
1 cot

cos
n

n n
n

+DÈ ˘= D - gÍ ˙gÎ ˚

Now, rotation of nth plate is given by

( )1
n

n

df bc
b

q = -

    
1

1 1
1 1

1 1
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cos sin cos
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n n n n n
n n n nb

+
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    ( ) 1 1
1

1

1
cot cot

sin sin
n n

n n n
n n nb

- +
-

-

D DÈ ˘= D g + g - -Í ˙g gÎ ˚

Similarly,

                    ( ) 2
1 1 1
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1
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sin sin
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+
+ + +

+ +

D DÈ ˘q = D g + g - -Í ˙g gÎ ˚
Since, joints are rigid, the following compatibility condition should be satisfied:

αn + βn + θn = αn+1 + βn+1 + θn+1 ...eqn. 12.12

Equation 12.12 may be applied from joint 2 to joint N − 1 to get N − 2 equations.
Step 11: Thus, from equations 12.11 and 12.12, we get 2N − 2 equations in 2N − 2 unknowns. Solving
simultaneous equations the unknowns M2, M3, ..., MN−1, T1, T2, ..., TN can be found.
Step 12: After knowing transverse moments, reinforcement required in transverse direction may be

found. Spacing may be increased towards end frames, since, these moments vary in the form sin .
x

L

p

Knowing longitudinal stresses from equation 12.9, longitudinal reinforcement may be decided. From

plate action, end shear may be found and the diagonal shear reinforcement decided. Figure 12.1 shows

typical reinforcements in a tough type folded plate.
Note: Many times instead of bending transverse steel up and down, two layers of transverse steel are
provided longitudinal steels are located so as to support transverse steel.

Shear
reinforcement End frame

4/4

L/2

Longitudinal
steel

CL

Transverse
steel

Fig. 12.12 R.C. Details of a folded plate roof
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12.6 SIMPSONS METHOD
In Whitney’s method, there is need for solving 2N − 2 simultaneous equations to get transverse moments
and longitudinal shears at folds. In Simpson’s method, solution of simultaneous equations is avoided by
going through moment distribution and stress distribution procedure. Stress distribution procedure is
similar to moment distribution. It is used to ensure the continuity of stresses calculated for plate action
neglected the effect of longitudinal stresses. This technique is in two parts—first part consists in finding
stress continuity when the joints do not deflect from their original positions and the second part allowing
joint deflections. The method is outlined below with reference to the folded plate shown in Fig. 12.13.

0

1 2

h3

b3

3 4

5

Fig. 12.13

Step 1: Consider a transverse section of unit length at mid span. Assuming that the joints do not deflect
arrive at joint moments by moment distribution. Calculate the reactions at the joints and apply forces
equal and opposite to these as joint loads. Resolve these joint loads into plate loads. Calculate the
bending stresses caused by the plate loads, assuming each plate to be free to bend independently. These
stresses may be referred as free edge stresses.

Next establish stress compatibility at the common edges of adjacent plates by stress distribution. The
resulting stresses in the plates are those which develop if the joints do not deflect. This solution is
referred as no rotation solution. The solution up to this point may be referred as Winter and Pei solution,
Winter and Pei are the researchers who stopped the analysis at this stage.
Step 2: The effect of joint displacements is to be accounted by considering the rotations of plates 2, 3
and 4. The first and the last plates are treated as cantilevers.

Let joint 2 deflect by an arbitrary amount ∆20 below the level of joint 1 (Fig. 12.14). As a result of

it fixed end moment developed at joint 2 is 2 20 2 20
2

22

3 3
,

EJ EJ

bb

D y
=  where J2 is moment of inertia of the

plate 
31

12
h

Ê ˆ=Á ˜Ë ¯  per unit length and
20

20
2

.
b

D
y =  As ∆20 is

arbitrary, ψ20 is an arbitrary rotation of plate 2. Let ψ20 be
such that the magnitude of the moment introduced is, say

300 units. The arbitrary rotations and the actual rotations
of the plate are clearly related by an unknown constant,
say K2, such that ψ2 = K2ψ20. The arbitrary moment of
300 at joint 2 is next distributed by the moment distribution Fig. 12.14

1

2
�20

b2
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procedure. The resulting joint moments and reactions are found. Forces equal and opposite to the
reactions are applied at the joints and resolved along the plates as plate loads. The free edge stresses
caused by these loads are next determined. The stress compatibility at the common edges is realized by
stress distribution. The resulting stresses shall be referred as case II solution corresponding to an
arbitrary rotation of plate 2.
Step 3: Now consider the effect of an arbitrary rotation of plate 3 (Ref. Fig. 2.15). As before,

ψ3 = k3 ψ30.

The moment introduced at joint 2, is 3 30 3 30
2

33

6 6EJ EJ

bb

D y
=

Let the arbitrary rotation ψ30 be such that the magnitude of the moment induced is 600 units.
Distribute the moments of 600 units each at joint 2 and 3 by moment distribution procedure. Arrive

at the reactions at the joints and apply forces opposite to these at the joints. Resolve these forces into
plate loads and compute the free edge stresses. Correct them by stress distribution to secure stress
compatibility. The resulting stresses are referred as case III solution.

b3

�30

Fig. 12.15

Step 4: The case IV solution correspond to an arbitrary rotation ψ40 of plate 4. It is worked out in the
same manner as the case III solution. Again, we note that

ψ4 = k4 ψ40 ...eqn. 12.13

Step 5: The plate deflections ∆n are next worked out. ∆n consists
of the deflection corresponding to the no rotation solution plus
k2 times the deflection due to case II solution, plus k3 times the
deflection resulting from the case III solution, plus k4 times the
deflection corresponding to the case IV solution.

If edge stresses are known, the corresponding deflections may
be calculated as explained below:

Let the stresses at n−1 and nth joint be fn−1 and fn respectively
as shown in Fig. 12.16. From the figure, it is clear that,

1bending stress
2

n n
b

f f
f - -

= =
Fig. 12.16

fn

fn 1�

fb

n

n+1
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Noting that moment varies in sinusoidal form,
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i.e. mid span deflection, due to moment is
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...eqn. 12.14a

If closed form solution is used,

                ( )
2

1
5

48 n n
n

L
f f

Eh -d = - ...eqn. 12.14b

Total deflection,
               ∆n = δ0 + k2 δ20 + k3 δ30 + k4 δ40

Step 6: From the results of step 5, the plate rotations may be calculated using the formula given below:

             ( ) 1 1
1

1

1
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n n n n
n n nb
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and           ( ) 1
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1
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n n

n n n n
n n nb

+
+ + +

+ +

D DÈ ˘y = D g + g - -Í ˙g gÎ ˚
...eqn. 12.15

Equating ψ2, ψ3 and ψ4 calculated in Step 6 to k2ψ20, k3ψ30 and k4ψ40 a set of three linear simultaneous
equations in unknowns k2, k3 and k4 are obtained. Solve the equations to get k2, k3 and k4.
Step 7: Compute the edge stresses as

0 2 3 42 3 4n n n n nf f k f k f k f= + + + ...eqn. 12.16

Then the shell may be designed.
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12.7 STRESS DISTRIBUTION PROCEDURE
To ensure compatibility of  stresses at common edges free edge stress distribution is to be carried out.
The procedure of stress distribution is similar to moment distribution method with appropriate carry
over factor and appropriate distribution factor. In this article, the carry over factor and distribution
factors to be used are derived.

The continuity of stresses along edge n common to the plates n and n + 1 is ensured by the appli-
cation of edge shears in longitudinal direction. When plate n and n + 1 are regarded as bending
independently, free edge stresses fn and fn+1 develop, which are different from each other.

The application of the longitudinal shears at the edges has the effect of correcting the values of fn and
fn+1 so that they become equal. To correct those stresses, it is not necessary to solve for edge shears. The
correction can be by the stress distribution procedure. Figure 12.17 shows nth  and n + 1th plate from
one end to mid span. Let Tn be longitudinal edge shear at edge n.

n + 1th plate

n + 1

Tnn

nth plate

End
frame

n   1�

Fig. 12.17

Due to longitudinal shear Tn, stress in plate n at edge n is,

1
,

2 2
n n n n

n n n

T b b T

I h b
= ¥ ¥ + where In = moment of inertia of ith plate

3

12

2 2
n n n n

n nn n

T b b T

h bh b
= ¥ ¥ +

4 4n n

n n n

T T

b h A
= =  where An = bnhn, cross-sectional area of nth plate ...eqn. 12.17

Similarly, stress at edge n − 1 in nth plate

3

12

2 2
n n n

n
n nn n

b b T
T

b hh b
= - ◊ ¥ ¥ +



156 THEORY OF PLATES AND SHELLS

2 n

n

T

A
= - . ...eqn. 12.18

Stress in n + 1th plate at edge ‘n’
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Stress in n + 1th plate at edge n + 1,
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If free edge stresses at joint n in plate n is fn  and at joint n in n + 1 plate is fn+1 the actual stresses
are, in plate n,
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and in plate n + 1, 1
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-

But, the effect of Tn forces are to ensure stress compatibility. Hence,
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Thus, the correction to edge stress at n in plate n is ( )1
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Similarly, the correction to edge stress at n in plate n + 1 is
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...eqn. 12.21
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Thus, we conclude, if the correction to stress at joint n is (fn+1 − fn), distribute 
1

1

n

n n
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A A
+

++  of it to edge

n of plate and 
1

n

n n
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A A +
-

+  of it to edge n of (n+1)th plate. In other words, the distribution factor is

1
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++  for nth edge of plate n and 
1

n

n n

A

A A ++  for nth edge of plate n + 1.

From equations 12.17 and 12.18, it is clear that due to Tn stress at nth edge of n plate is 
4 n

n

T

A
while

in the same plate at other (n − 1)th edge is 
2 n
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A
- . From eqn. 12.19, we find the stress at edge n in

(n +1)th plate due to Tn is 
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 while that at other edge (n + 1)th is 
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.n

n

T

A +
 It shows that if corrections

are made for stresses at edge n,
1

2
- of corrected stress should be carried over to other edge. Thus, the

carry over factor is −Y2.

Thus, in the stress distribution procedure,

Distribution factors are 1

1 1

 and n n

n n n n

A A

A A A A
+

+ ++ +
 i.e. distribution factor is inversely proportional to

cross-sectional area and, carry over factor is 
1

2
- .

QUESTIONS

1. Discuss the merits and demertis of folded plate roof over shell roofs.
2. Explain briefly structural behaviour of folded plate roofs.
3. List the assumptions made in the analysis of folded plate roofs.
4. Give step by step procedure of analysis of folded plate roof by Whitneys method. Give the recurring equations

also.
5. Write short note on Simpson’s method of folded plate analysis.
6. Derive the equations of three shears used in folded plate analysis.
7. Derive carry over factor and stress distribution factors to be used in folded plate analysis.
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Introduction to Shells

A shell is a thin curved surface the thickness of which is small compared to the radius and the other two
dimensions. Shells are used  for roofing large column free areas. Figure 13.1 shows some of the
commonly used shell roofs.

(  ) Cylindricala

(  ) Butterflyb

(  ) North lightc

(  ) Conical shelld

(  ) Spherical domee

(  ) Paraboloidf
(  ) Ellipsoidg

Fig. 13.1 (Contd.)

Chapter
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(  ) Elliptic paraboloidh (  ) Hyperbolic paraboloidi

(  ) Hyperboloid of revolutionj

(  ) Conoidk

(  ) Corrugatedl
( ) Funicularm

Fig. 13.1
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13.1 CLASSIFICATION OF SHELLS
Shells are stressed skin structures i.e. the structures in which load transfer is through the skin of
structure. In shells, because of their curved shape, bending is reduced to the great extent and load is
transferred as compressive force through the membrane of the structure. IS: 2210 gives the classifica-
tions of shell on the basis of their shape and the method of generating such shapes. Table 13.1 gives the
classification of the shell.

Some of the terms used in classification of shells are defined below:
(i) Shells of Revolution: The surface generated when a plane curve is rotated about an axis is known

as shell of revolution.
(ii) Shells of Translation: Shells which are obtained by moving one curve parallel to itself along

another curve, the planes of the two curves being at right angles to each other.
(iii) Ruled Surfaces: The surfaces which can be generated entirely by straight lines are known as ruled

surfaces. The surface is said to be singly ruled if at every point on the shell surface a single
straight line entirely lying on the surface can be drawn and it is doubly ruled if at every point two
straight lines lying entirely on the surface can be drawn.

(iv) Gauss Curvatures: Gauss curvature is the product of the two principal curvatures at any point on
the surface. Thus,

1 2

1 1 1

R R R
= ¥

where R is Gauss curvature, R1 and R2 are the principal curvatures.
(v) Singly Curved: A shell is said to be singly curved if its one principal curvature is zero (hence,

Gauss curvature is zero). It is also known as developable shell, since, such surfaces can be
developed from bending plane surface.

(vi) Doubly Curved: A shell is said to be doubly curved if its Gauss curvature is definite. Such shells
are non-developable.

(vii) Synclastic shell: A shell is said to be synclastic if its Gauss curvature is positive.
(viii) Anticlastic shell: A shell is said to be anticlastic if its Gauss curvature is negative.

13.2 ADVANTAGES AND DISADVANTAGES OF SHELLS
Advantages of shell structures are:

(i) Good from the aesthetic point of view
(ii) Material consumption is less

(iii) Large column free areas can be covered.
(iv) Formwork can be removed early.

Disadvantages of shell structures are:
(i) Formwork is costly.

(ii) Analysis is complicated.
Comments on shell structures: Shell structures become economical if a number of units are to be cast
so that repetitive use of formwork is possible. If from aesthetic point of view and from the requirement
of large column free area, if an architect prefers shell roof, a structural engineer should design such roofs.

13.3 EFFICIENCY IN THE USE OF MATERIALS
Shells are an example of strength through form as opposed to strength through mass. In a R.C. beam/
slab material is subjected to maximum stress only at extreme fibre, that too at the section subject to

(Contd. on p. 162)
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Table 13.1 Classification of shells

Shells of
revolution

Shells of
translation

Ruled
surfaces

Ruled
surfaces

Shells

Singly curved
(developable)

Doubly curved
(non-developable)

Gauss
curvature = 0 Synclastic

curvature +veGauss
Anticlastic

curvature -veGauss
Other special

types

Shells of
revolution

Shells of
translation

Shells of
translation

Shells of
revolution

Alternately
synclastic
anticlastic

Partially
synclastic

and anticlastic

Miscel-
laneous

Conical
shells

Cylindrical
shells

including
north light

and butterfly

Conical
and

cylindrical

Spherical
domes,

paraboloids
ellipsoids

Elliptic
paraboloid,

circular
paraboloid

Hyper-
boloid

of
revolution

Hyper-
bolic
para-

boloids

Hyper-
boloids of
revolution,
hyperbolic
paraboloid

conoid

Corrugated
shells

Funicular
shells
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maximum moment. At all other portion the material is under utilised. In a column most of the material
is fully stressed and hence, the material is utilised to maximum extent. That is why we commonly find
a column of size 230 × 450 mm support 3 to 4 beams of size 230 × 450 mm. In shells attempt is made
to reduce flexure and transfer the load as membrane compression. Hence, in shells material utilisation
is improved. It results into use of thinner sections and hence reduction in dead weight. By this means
a minimum of material is used to the maximum structural advantage. Shells of double curvatures are
among the most efficient of known structural forms. Most shells occurring in nature are doubly curved
shells. Shells of eggs, nuts and human skull are common examples.

Thus, in shells strength is due to shape.

13.4 HISTORICAL NOTE
An examination of some of the old places of worship in India and abroad show that shell structures have
been in usage even though the theoretical knowledge of their structural behaviour was then meagre. But
the modern thin shells are a far cry from the massive masonry domes of the middle ages. A comparison
of the relative weights of 17th century Peter Cathedral at Rome and a modern workshop building at
Jena, Germany brings home the difference. Both these domes cover an area of 39.6 m diameter.

St. Peter Cathedral at Rome: (Ref. Fig. 13.2)

27.6 m

39.6 m

1.2 m 1.5 m

3 m

Fig. 13.2 Cathedral at St. Peter, Rome

     Total weight = 11000 tonnes
i.e. = 88.42 t/m

It requires heavy foundation.
Now at Schott Workshop, Jena, the dome built is shown in Fig. 13.3.

3.9 m

60 mm
thick

7.8 m

39.6 m

Fig. 13.3 Schott workshop at Jena, Germany
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Weight including ring beam = 364 tonnes.
∴ Weight per metre of periphery = 2.93 t/m

One brick wall can take this load.
The above improvement was possible because of the following:

1. R.C.C. is better material compared to masonry.
2. Now there is better understanding of analysis and design.

13.5 A BRIEF LITERATURE REVIEW
The thin reinforced concrete shell had its beginning in Germany in 1920s. Two German engineers—
Finsterwalder and Dishinger—were the first two to develop a theoretical analysis applicable to R.C.
Cylindrical shells around the year 1930. An early American contribution was a paper by Scharer (1936),
which attempted a simplified analysis. Until 1940s, cylindrical shell analysis and construction domi-
nated the research field.

It was only in the mid 1930s and early 1940s that the designers began looking for other forms of
shells for roofs. Around 1935, two French engineers, namely, Aimond and Raffaile, published studies
on the properties and potentialities of the hyperbolic paraboloid. However, it was the Mexican architect
Felix Candola who promoted and popularised the hyperbolic paraboloid for roofing factories, churches,
clubs etc.

The conoid had its beginning in France. The one sheet hyperboloid appears to have been first
employed for roofing in Germany in the form of Silberkuhl shells. 1950s and 1960s have witnessed an
unprecedented spurf at activities in the field of thin shells. Many new forms are continuously experi-
mented upon and added to the growing vocabulary of the shells. With the advent of computers and
development of analysis  packages, now a days the designers are more confident in going for the shell
roofs. They have even tried to optimize shell roof design and have given guidelines for choosing
dimensions of various type of shell roof.

13.6 ANALYSIS AND DESIGN
In the analysis of shell roofs, the structure is regarded as homogeneous and isotropic. However, in the
design of reinforcement, the concrete is assumed to be cracked and steel is provided to take care of the
full direct and diagonal tension.

Shell roofs of complex shapes do not always lend themselves to calculation by analytical means
using classical theory. Hence, there is growing trends towards the use of experimental investigations
and the use of numerical method like finite element analysis.

To account for the secondary effects like shrinkage and temperature, exact calculations are not
available. In tropical countries, the stresses due to temperature changes is sever. The secret of avoiding
cracks due to secondary effects lies in the provision of closely spaced small diameter reinforcement.

QUESTIONS

1. Explain the following terms with neat sketches:
(i) Shells of revolution (ii) Shells of translation (iii) Ruled surfaces.

2. What is Gauss curvature? How do you classify shells based on Gauss curvature values?
3. Give the Indian standard classification of shells.
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Introduction to Cylindrical
Shell Roof

Cylindrical shell roof is commonly adopted for covering large column free areas in the factories. As
stated in the previous chapter, cylindrical shell is generated when a straight line moves over a curved
surface, maintaining its position at right angle to the curve and moving parallel to itself in the projected
plane. In this chapter, the various parts and types of cylindrical shell roof are explained and design
criteria is presented. A preliminary design procedure, namely, Lundgreens beam theory is presented.

14.1 PARTS OF A SINGLE CYLINDRICAL SHELL ROOF
Figure 14.1 shows a typical single barrel shell and its various parts.

The straight line generating the surface is known as generator and the plane curve that guides the
generator is known as the directrix. The directices that are usually employed are the arc of a circle, the
semiellipse, the parabola, the cycloid or the catenary.

A cylindrical shell may or may not be provided with edge beams. The supporting members at the two
ends of a shell are known as traverses or end frames. The traverse may be a solid diaphragm, a tied arch,
a trussed arch or a rigid frame. It is usually assumed that the shell is simply supported on the traverses.
Hence, the traverse should be rigid in its plane but flexible out of plane. This is achieved to a great
extent if the frame is deep and thin. The distance between the two adjacent traverses is known as span
of the shell and the projection of the directrix is known as chord width.

14.2 TYPES OF CYLINDRICAL SHELL ROOFS
The shell roof may be a single barrel as shown in Fig. 14.2 (a) or it may be a multiple barrel as shown
in Fig. 14.2(b). Usually shells are supported on two end frames. But sometimes they may be built
monolithically over more than two end frames as shown in Fig. 14.2(c). Such shells are known as
continuous shells.

14.3 DESIGN CRITERIA
Indian standard code IS: 2210 recommends the following:

1. Grade of Concrete: M:20
2. Maximum size of the aggregates is to be restricted to 12 mm to 20 mm depending upon the

thickness of the shell.
3. If chord width is 8 m to 12 m, maximum span is restricted to 30 m.

Chapter
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End frame

Edge beam

Directrix

Generator

L
=

sp
an

End frame

Chord width

(  ) Parts of cylindrical shell roofa

Elliptic

CircularCycloid

Parabolic

(  ) Different types of directoriesb

Fig. 14.1

If chord width used is large (say upto 30 m), span should be reduced to 8 to 12 m.
For spans more than 30 m, prestressing of edge beams is necessary.

4. Height of shell may be kept 1/12 to 1/6th span—the larger figure applicable to smaller span.
However, in case of shells without edge beam, depth shall not be less than 1/10th span.
In case of short shells depth should be at least 1/8th of chord width.

5. Semicentral angle may be kept between 30° to 40°. Restricting it to 40° has the following
advantages:
(a) Wind load effect may be ignored.
(b) During construction back form is not required for concreting.
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End frame

Intermediate frame

End frame

(  ) Single barrela

(  ) Multiple barrel shellb

(  ) Continuous shellc

Fig. 14.2

6. Thickness of shell should be at least 50 mm to avoid the problems of leakage. Usually thickness
selected for long shells is 75 mm while for short shells (more chord width and less span) thickness
of 60 mm may be used.
Near the ends the shell is thickened to 30 percent extra. The distance of thickening from the edge
is 0.38  to 0.78rt rt  where ‘r’ is the radius of the shell directrix and ‘t’ is the thickness of shell.
The need for edge thickening are:
(a) Moments in the shells are larger at the ends.
(b) At the edges 3 layers of reinforcement are to be provided namely—longitudinal, transverse

and shear. The three layers can be suitably accommodated with required cover only by making
edges thicker.
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7. Edge beam depth is automatically fixed once we select overall depth and semicentral angle.
Thickness of the edge beam shall be 2 to 3 times the thickness of the shell.

Example 14.1. Fix up the overall dimensions for a circular cylindrical shell of span 25 m and chord
width 10 m.

Solution:
Span L = 25 m

Chord width = 10 m.
Let the semicentral angle be 40°.

Then, radius of the shell
10 2

7.78 m
sin 40

R= = =
∞

∴             Rise of shell ( )cos40 7.78 1 cos40R R= - ∞ = - ∞
 = 1.82 m.

Overall depth of shell should be

1 1
th to th span.

12 6
=

25 25
 to  m.

12 6
=

Let us select it as 3.4 m.
∴  Edge Beam Depth = 3.4 − 1.82 = 1.58 m.
Let it be 1.6 m.

Let thickness of shell = 75 mm.
∴ Width of edge beam = 2 to 3 times 75 mm.
Let us select width of edge beam = 200 mm.

Edge thickening
Thickness = 30% extra
               = 75 + 0.3 of 75 = 97.6 mm
Let us use 100 mm thickness of edges.
Distance of edge thickening:

0.38  to 0.76rt rt

i.e. 0.29 m to 0.58 m
Let the edge be thickened to a distance of 600 mm.
Figure 14.3 shows the section selected.

14.4 ANALYSIS
Various methods of analysis found in literature may be listed as:

(i) Beam theory
(ii) Membrane theory

(iii) Bending theory
(iv) Finite element method

Fig. 14.3

600 mm

75 mm

100 mm

Span = 25 m
40� 40�

1.58

3.4 m
10 m

200
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Beam theory is explained in this chapter. Membrane theory and Bending theory are taken in the next
two chapters. Finite element method is treated as out of the scope of this book. For this method, readers
may refer the books on the finite element analysis.

14.5 BEAM THEORY
This theory can be used for the analysis of cylindrical shells with span more than three times the chord
width. This theory is based on the assumption that plane cross-section remains plane even after defor-
mation. In other words, it assumes longitudinal stress varies linearly across the depth of section. This
assumption holds good fairly well for long shells. Hence, one can use it for the analysis of such shells.

This theory is relevant even today to study because it gives feel of the structural behaviour and the
designer can avoid mixing up of the sign conventions in the sophisticated analysis and committing the
blunder. This method has the following advantages:

1. It brings shell analysis within the reach of those who are not familiar with the technique of
advanced mathematics.

2. Shells with non-circular directices can be dealt with easily.
3. Shells with non-uniform thickness also can be handled without much difficulty.
4. Structural action of the shell is easily visualised.
This theory divides the shell action into

(i) beam action
(ii) arch action

14.5.1 Beam Action
A long cylindrical shell is analysed as a beam with curved cross-section, supported on end frames. To
start with entire concrete section is assumed effective to determine the longitudinal stresses and shear
stresses. In the design wherever tension is found, concrete is treated as ineffective and steel is provided
to take the tension. Consider the typical cross section of the shell shown in Fig. 14.4.

N A

y
h

2a

2b �k

�n
�

d�
R

R - radius of shell
- semi central angle

2a - depth of edge beam
2b - width of edge beam
h - thickness of shell.

�k

Fig. 14.4
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Let the neutral axis be at a distance y  from the horizontal axis through crown. Then,

Moment of area about the horizontal axis at crown

Total area of shell
y =

   
( ){ } ( )

0

2 2 1 cos cos 2

2 2 2

k

k

k

a b R a Rd h R R

a b hR

fÈ ˘
Í ˙¥ - f + + f - f ¥
Í ˙Î ˚=

¥ + f ¥È ˘Î ˚

Ú

   
( ){ } { }24 1 cos sin

4
k k k

k

ab R a R h

ab hR

- f + + f - f
=

+ f
...eqn. 14.1

If φn is the semicentral angle made by the neutral point on shell as shown in the figure, then it can
be determined from the relation:

( )1 cos nR y- f = . ...eqn. 14.2

Then the moment of inertia of the section about neutral axis ‘I’ is given by
I = Moment of inertia of the edge beams + Moment of inertia of the shell.

 ( ) ( ){ } ( )2 23 2

0

1
2 2 2 2 1 cos cos cos 2

12

k

k nb a a b R y a R d h R
fÈ ˘

Í ˙= ¥ + ¥ - f - + + f f - f ¥
Í ˙Î ˚

Ú

Using the expression, ,
M

y
I

s =  stresses at any required depth can be found, in which M is the

moment. It is maximum at centre of span as it is a simply supported beam of span L subjected to

uniformly distributed load w i.e. maximum moment is 
2

.
8

wL=

Obviously bending stress is zero at neutral axis and is having maximum compressive at crown point
in midspan. This stress should be checked for bending compression. To take care of tensile stresses
provide longitudinal reinforcement to take complete tension. It may be observed that only a small
portion of shell (that is below N-A) and edge beams are in tension. Tensile force in the edge beam may
be considered equal to the tensile stress at mid depth of the edge beam multiplied by the area of the edge
beam. Reinforcement found is provided at closer interval in the lower portion and spacing is uniformly
increased towards the top.

The beam with this curved shape is to be designed to withstand shear stresses also. Maximum shear
force is equal to 1/2 the total load and occurs near end frames.

2

wL
V = .

Maximum shear stress ( ),V
ay

bI
= where

   b = width of shell at neutral axis = 2h

ay = moment of area above neutral axis about the neutral axis
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( )
0

2 cos cos
n

nRd h R R
f

= f f - fÚ

2
0

2 sin cos n
nR h

f= f - f fÈ ˘Î ˚
22 sin cosn n nR h= f - f fÈ ˘Î ˚

Shear reinforcement is provided diagonally at corners to a maximum length of L/4.

14.5.2 Arch Action
Consider the freebody diagram of a shell of unit length as shown in Fig. 14.5.

Unit length

�k �k

Fig. 14.5  Arch action

The equilibrium of the unit length of shell is maintained by two sets of forces, namely the load w per

unit length of shell and the specific shear ( )w
ay

bI
d =  where the specific shear is defined as difference

in shear forces between the two edges of the unit length of shell.
The specific shear acting at any point in the direction of the tangent to the shell arch may be resolved

into its horizontal and vertical components. It is clear that the sum of the vertical components of specific
shear balances the vertical load on the arch and the sum of the horizontal components will be zero.

If it is a single barrel shell, it is obvious that the elemental shell arch do not develop any restraining
forces or moments at its ends. Hence, we have a statically determinate free arch for the analysis.

If it is an intermediate shell of a multiple shell, the ends will behave like fixed ends. Hence, fixed
arch analysis is necessary. The column analogy or the elastic centre method is suitable for the analysis
of fixed archies.

Example 14.2. Design a reinforced concrete circular shell with the following particulars.

Radius R = 3 m
Span L = 15 m
Semi central angle φk = 60°
Thickness of shell h = 75 mm
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75 mm

�n

�k

R = 3 m

N A

Fig. 14.6

Loads
Self weight = 0.075 × 1 × 1 × 25 = 1.875 kN/m2

Water proofing cover and occasional live load = 1 kN/m2

∴    Total load = 2.875 kN/m2

Weight per metre run of shell

22.875 2 2.875 3 2 18.06 kN m
3kw R
p

= ¥ ¥ f = ¥ ¥ ¥ =

Maximum bending moment

                  
2 215

18.06 508 kN-m
8 8

wL = ¥ =

Since, edge beams are not provided, a = b = 0
Referring to Fig. 14.6,

∴
( ) ( )2 sin sink k k k

k k

R h R
y

hR

f - f f - f
= =

f f

   

3 sin60
3 0.519 m

3

pÈ ˘-Í ˙Î ˚= =
p

∴ φn is obtained by the relations

cos ny R R= - f
                  0.519 = 3(1 − cos φn)

∴ φn = 34.2°

 ( )22

0

2 cos cos
k

nI Rd h R d
f

= f f - f fÚ

   
3 2

0

1 cos2
2 2cos cos cos

2

k

n nR h d
f

+ fÈ ˘= - f f + f fÍ ˙Î ˚Ú
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3 2

1
sin 2

22 2cos sin cos
2

k k

n k k nR h

È ˘f + fÍ ˙
= - f f + f fÍ ˙Î ˚

( )
2 2

1
sin 2 34.2

3 22 3 0.075 2cos34.2 sin60 cos 34.2
2 3

pÈ ˘+ ¥Í ˙p
= ¥ ¥ - ¥ +Í ˙

Î ˚

4 12 40.0968m 0.0968 10  mm= = ¥
∴ Compressive stress at crown

6
2 2

12

508 10
519 2.723 N mm 8.5N mm

0.0968 10

M
y

I

¥= = ¥ = <
¥

     Rise of shell ( )cos60 3 1 cos60 1.5 mR R= - = - =
∴ The distance of lowest point from NA = 1.5 − 0.519 = 0.981 m = 981 mm
∴ Maximum Tensile Stress in shell

6
2

12

508 10
981 5.148N mm

0.0968 10

¥= ¥ =
¥

∴ Tensile force per metre run of shell = 5.148 × 75 × 1000 = 386116 N

∴  
2386116

2574 mm
150stA = =

Provide 16 mm bars at 75 mm c/c. This may be changed to 12 mm bars at 200 mm c/c near neutral
axis and is maintained in the compression zone.

Design for Shear

Maximum shear force     
15

18.064 135.48 kN
2

= ¥ =

At neutral axis
22 sin cosn n nay R h= f - f fÈ ˘Î ˚

    
2 234.2

2 3 0.075 sin34.2 cos 34.2
180

¥ pÈ ˘= ¥ ¥ -Í ˙Î ˚
     = 0.09234 m3 = 0.09234 × 109 mm3

∴ Shear strees at neutral axis

 ( )V
q ay

bI
=

   
9

12

135.48 1000
0.09234 10

2 75 0.0968 10

¥= ¥ ¥
¥ ¥ ¥

    = 0.86 N/mm2
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 τv = 1.5 × 0.86 = 1.29 N/mm2 < τc max
Hence, shear reinforcement can be provided to take care of shear.

Ast provided at N-A

2

2
12

4 1000 565.48 mm per meter width
200

p ¥
= ¥ =

Percentage of reinforcement 
565.48

100 100 0.754
1000 75 1000
stA

h
= ¥ = ¥ =

¥ ¥
τc = 0.57 N/mm2

Thus τc < τv <  τc max.

Hence, shear reinforcement is to be provided.
Shear force per metre width of shell

 Vu = τv × h × 1000 = 1.29 × 75 × 1000 = 96750 N.
∴ Vus = 96750 − τc h × 1000

     = 96750 − 0.57 × 75 × 1000 = 54000 N
using 8 mm bars [note it is single legged is shells] at 45°

  
[ ]28 0.87 415 1000 sin 45 cos45

4 475 mm
54000

s

p ¥ ¥ ¥ ¥ ∞ + ∞
= =

Hence, provide nominal shear reinforcement of 8 mm at 200 mm c/c.

Arch Action
Load per unit length of shell, w = 18.06 kN

∴ Specific shear                   ( ) ( )18.06 1000

2sq ay
h I

¥=

[ ]2
12

18060
2 sin cos60

2 75 0.1613 10
R h= f - f

¥ ¥ ¥

( ) [ ]
2

12

18060 2 3000 72
sin 0.5

2 75 0.1613 10

¥ ¥ ¥= f - f
¥ ¥ ¥

 = 1007.68 [sin φ − 0.5 φ]

The arch is divided into a suitable number of parts for further calculation. In this case, let us divide
it into 12 parts at 10° intervals as shown in Fig. 14.7. The specific shear at centre of each part is
calculated using the above expression and is shown in Table 14.2. Specific shear force

                   
10

75
180s s sT q A q= = ¥ p ¥

∴ Net vertical force, V = ws − Ts sin φ, where ws is the vertical load on each part.

                  
18.06

1.505 kN 1505 N
12sw = = =

and net horizontal force          H = Ts cos φ
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�n

�k

Fig. 14.7

Referring to Fig. 14.7,
Moment at crown = ∑(V R sin φ + H R (1 − cos φ))
Moment at φ = Moment at crown − ∑(V R sin φ + H R (1 − cos φ))
In the expression for moment at φ summation is to be considered for the points above the one under

consideration. Table 14.1 shows these calculations.

Table 14.1 Calculation Table

Section            φ qs in N/mm2 Ts in N V in N H in N VR sin φ + M in
HR(1 − cos φ) N-m

Deg. Radians in N-m

1 5 0.0873 43.8 574.1 1455 572.0 386.96 340.5

2 15 0.2618 128.9 1687.3 1068.3 1630.0 996.1 −655.5

3 25 0.4363 206.0 2696.8 365.3 2444.0 1150.1 −1805.6

4 35 0.6109 270.2 3537.0 −523.7 2897.0 670.6 −2476.3

5 45 0.7854 316.8 4147.2 −1427.5 2933.0 −451.0 −2025.3

6 55 0.9599 341.8 4474.0 −2159.9 2566.0 −2025.5 0

∑ 727.5

∴ Moment at crown 727.5
Moment for design = 2476.3 N-m

                  Mu = 1.5 × 2476.3 = 3714.45 N-m

Taking effective depth = 75 − 25 = 50 mm

   
3 415

3714.45 10 0.87 415 50 1
1000 50 25

st
st

A
A

Ê ˆ¥ = ¥ ¥ ¥ - ¥Á ˜Ë ¯¥

              205.8 1
3012

st
st

A
A

Ê ˆ= -Á ˜Ë ¯

or               2 3012 205.8 3012 0st stA A- + ¥ =

                  Ast = 222 mm2
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Provide 8 mm bars at
28

4 1000 220 mm c c
222

p ¥
¥ ª

The bars are to be provided on appropriate side as shown in Fig. 14.8.

12    @ 200�

12    @ 70�

12    @ 70�

12    @ 200�

8    @ 220�

8    @ 220�

8    @ 200�

Fig. 14.8

Example 14.3. An intermediate shell of a multiple cylindrical shell roof of span 25 m is to be built.
Each shell unit has a chord width of 8 m. Fix up overall size of the shell and design longitudinal and
shear reinforcement. Explain how analysis for arch action will be carried out and then give typical
reinforcement details.

Solution.
L = 25 m Chord width = 8 m

Let θk = 40°.
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Then
4

6.22 m
sin 40

R = =
∞

                   Rise = R − R cos 40° = 6.22(1 − cos 40°)
   = 1.46 m.

The overall depth of shell should be between 
1

12
th to 

1

6
th span i.e. in this case it is to be between

25 25
 to m.

12 6
 Let us select overall depth = 3.0 m.

∴ Edge beam depth = 3.0 − 1.46 = 1.54 m. Let the thickness of shell be = 75 mm.
∴ Width of edge beam = 2 to 3 times 75 mm. Let us select width of edge beam = 200 mm.
Figure 14.9 shows the typical section selected.

�n�k

Unit length

Fig. 14.9

Half of the edge beam is assumed to take care of  shell on either side
∴ 2b = 0.1 or b = 0.05 m

2a = 1.54 m or a = 0.77 m
∴ Distance of N-A from the crown

 
( ) ( )24 1 cos sin

4

k k k

k

ab R a R h
y

ab Rh

È ˘- f + + f - fÎ ˚=
+ f

    

( ) 24 0.77 0.05 6.22 1 cos40 0.77 6.22 0.075 40 sin 40
180

4 0.77 0.05 6.22 0.075 40
180

pÈ ˘È ˘¥ ¥ - ∞ + + ¥ ¥ - ∞Î ˚ Í ˙Î ˚=
p¥ ¥ + ¥ ¥ ¥

     = 1.05 m
Let the intersection of neutral axis with shell make angle φn with vertical through crown [Ref.

Fig. 14.10]. Then
R(1 − cosφn) = 1.05
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N A

�n

�kR = 3 m

Fig. 14.10

   6.22(1 − cosφn) = 1.05
∴                      φn = 33.76°

                ( ){ }231
0.1 1.54 1.6 0.1 6.22 1 cos40 1.05 0.77 2

12
I = ¥ ¥ + ¥ - ∞ - + ¥

3 2

40 1
sin80 40180 22 6.22 0.075 2cos33.765 sin 40 cos 33.765

2 180

¥ pÈ ˘+ ∞Í ˙¥ p
+ ¥ ¥ - ∞ ¥ ∞ + ∞Í ˙

Î ˚
            = 0.828276 m4 = 0.828276 × 1012 mm4

Loads
Self weight of shell = 0.075 × 25 = 1.875 kN/m2

Occasional live load plus finishing load = 1 kN/m2

Total load on shell  = 2.875 kN/m2

∴ Load per metre run of shell 2.875 80 6.22
180

p= ¥ ¥ ¥

                   = 24.97 kN/m
           Weight of edge beams = 0.1 × 1.54 × 25 × 2 = 7.7 kN/m
Valley finishing and weight of edge finishing = 1.5 kN/m
∴                     Total load W = 34.17 kN/m

Design for Beam Action

Maximum moment 
2 225

34.17 2669.531 kN-m
8 8

wL
M = = ¥ =

      Maximum shear
25

34.17 427.125 kN
2 2

wL
V = = ¥ =

∴ Compressive stress at crown

       
6

3
12

2669.531 10
1.05 10

0.828276 10
c

M
y

I

¥s = = ¥ ¥
¥



178 THEORY OF PLATES AND SHELLS

           2 23.384 N mm 7.0 N mm= <
where 7.0 N/mm2 is permissible stress in bending compression in M:20 concrete.

Hence, the section selected is safe in bending compression.

Tensile Stress at Centre of Edge Beam:
Distance of centre of edge beam from neutral axis:

        y = R (1 − cos φk) + a − R (1 − cos φn)
= 6.22 (1 − cos 40°) + 0.77 − 6.22 (1 − cos 33.765°)
= 1.176 m

Tensile stress in edge beam at its centre

     
6

3 2
12

2669.531 10
1.176 10 3.79 N mm

0.828276 10
av

M
y

I

¥s = = ¥ ¥ =
¥

Total tensile force in edge beam
= 3.79 × 1.54 × 1000 × 0.1 × 1000
= 583698 N

∴                  
2583698

 reqd 3891 mm
150stA = =

Using 28 mm bars, number of bars required

          2

3891
7

28
4

= =
p ¥

Provide 7 bars of 28 mm diameter Fe-415 steel on each face of edge beam, since, another half of the
beam has to take care of loads from the adjoining shell.

Lower portion of shell is also in tension. Height of this portion

           ( )1 cos kR y= - f -

            = 6.22 (1 − cos 40°) − 1.05
            = 0.405 m

Maximum tension in this tensile portion of shell is at the junction with edge beam.

This stress             
M

y
I

= ¥

            

6

12

2669.531 10
0.405 1000

0.828276 10

¥= ¥ ¥
¥

             = 1.305 N/mm2

Thickness of shell at junction is 30% more than shell thickness.
i.e. Thickness = 1.3 × 75 = 100 mm (say)

∴  Tensile steel required 21.305 100 1000
870 mm  per metre length.

150

¥ ¥= =

∴ Provide 10 mm bars at 90 mm centre to centre in the lower portion of shell. After providing 4 such
bars, in the remaining portion nominal reinforcement of 10 mm @ 200 mm c/c may be provided
[Ref. Fig. 14.11].
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8 m End frame

10 mm @ 90

10 mm @ 220

10 mm @ 200 c/c

6.25

12.5

To be designed for
arch action

(  ) Planc

10 mm @ 200

(  )a (  ) Enlarged view of end beamb

Fig. 14.11 Typical Reinforcement in cylindrical shell

Design for Shear
Shear stress is maximum at the neutral axis in the end section. Here

22 sin cosn n nay R h= f - f fÈ ˘Î ˚

    
2 33.765

2 6.22 0.075 sin33.765 cos33.765
180

¥ pÈ ˘= ¥ ¥ ∞ -Í ˙Î ˚
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= 0.382318 m3

= 0.382318 × 109 mm3

∴ Shear stress at N-A

                   ( )V
q ay

bI
=

                      
( )

9
12

427.125 1000
0.382318 10

2 75 0.828276 10

¥= ¥ ¥
¥ ¥ ¥

= 1.314 N/mm2

Ast provided
2

24 10
1000 392.7 mm

200

p ¥= ¥ =

∴    % steel
392.7

100 0.523
75 1000

= ¥ =
¥

∴           τc = 0.48 N/mm2. [for M: 200 mm].

Hence, shear reinforcement is to be designed.

Factored shear force per metre length of shell

Vu = 1.5 × 1.314 × 1000 × 75 = 147825 N

∴ Vus = Vu − τcbd

Vus = 147825 − 0.48 × 75 × 1000 = 111825 N

Using 8 mm stirrups at 45°,

( )0.87
sin cos

y sv
v

us

f A d
S

V
= a + a

( )20.87 415 8 1000 sin 45 cos45
4

111825

p¥ ¥ ¥ ¥ ∞ + ∞
=

= 229 mm.

Provide 8 mm bars at 220 mm c/c.

Design for Arch Action
The intermediate shell acts as a fixed arch. The specific shear may be found at centres of several equal
parts. Horizontal and vertical loads due to specific shear may be determined for each part. The vertical
downward load due to self weight of each segment may be calculated. Then the arch may be analysed
by elastic centre method to get transverse moments at the centre of each part. Then the reinforcement
required to resist the transverse moment may be determined. The transverse moment is −ve near edges
and positive at crown. Hence, the reinforcement is on upper side at edges while it is on lower side at
crown. However, since the thickness is small sometimes one layer on upper side and another layer on
lower side are also provided.

Figure 14.11 shows the details of reinforcement.
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QUESTIONS

1. Draw a neat sketch of a single barrel shell and indicate its various parts.
2. List the Indian standard recommendations for the design of cylindrical shell and fix up the overall dimensions

for a shell to cover an area 24 m × 8 m.
3. What are the advantages of beamy theory for the analysis of cylindrical shells? What are its limitations?
4. Briefly explain Leudgreen’s beam theory for the analysis of a shell with edge beam giving necessary equations

for beam action. Arch action may be explained qualitatively.
5. Design longitudinal and shear reinforcement in a circular cylindrical shell of span 24 m and chord width 8 m.

Use beam theory.
6. Draw neatly typical reinforcements in a cylindrical shell roof with edge beam.
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Membrane Analysis of
Cylindrical Shell Roofs

In the membrane theory, the shell is idealised as a membrane incapable of resisting bending stresses.
In other word, in this theory, bending of element of a shell is ignored and it is treated as though it is
under the forces through the skin of the shell structure.

In case of cylindrical shells bending of the element is not negligible. To get reasonably good behav-
iour of shell, the bending should be considered. Hence, one should design cylindrical shell roofs only
after analyzing by bending theory. However, we study the membrane theory first because of the follow-
ing reasons.

1. It is useful in many practical cases in gaining some insight into the structural behaviour of a shell.
2. We see later that the membrane theory can be used as a particular integral in the bending theory.

15.1 EQUATIONS OF EQUILIBRIUM
Figure 15.1(a) shows the coordinate system selected and 15.1(b) shows a typical element subject to the
membrane forces.

y = �

x

dx

z

R

�d�

(  )a

Nx

Nx�

N
�x

N
�

x
y

z
N

�

+

N
�x
+

Nx�

+
Nx

+

(  )b

x

Fig. 15.1

Chapter

15
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Note:

1. The origin of the coordinate system is at the apex of the shell directrix at mid span.
2. The coordinate x is measured along the crown generator.
3. The coordinate φ or y is along the tangent to directrix.
4. The coordinate z is in the radial inward normal.

The membrane forces acting on the element are

1. longitudinal tension Nx per unit width.
2. tension is transverse (φ or y) direction Nφ per unit width.
3. shear forces Nxφ and Nφx per unit width.

Measuring φ from the crown and taking an element of size dx × Rdφ we may note,

x
x x

N
N N dx

x
+ ∂
= +

∂

N
N N d

f+
f f

∂
= + f

∂f

x
x x

N
N N dx

x
f+

f f
∂

= +
∂

x
x x

N
N N d

f+
f f

∂
= + f

∂f
Let X, Y and Z be components of load intensity on the element.
Consider the equilibrium of forces in x-direction.

∑ Fx = 0 →
Nx

+Rdφ − NxRdφ + N+
φx dx − Nφx dx + X dx Rdφ = 0

Substituting for Nx
+ and N+

φx we get,

0xx
x x x x

NN
N dx Rd N Rd N d dx N dx XRdxd

x
f

f f
∂Ê ˆ∂Ê ˆ+ f - f + + f - + f =Á ˜ Á ˜Ë ¯∂ ∂fË ¯

Simplifying and dividing throughout by R dx dφ, we get

1
0

xx
NN

X
x R

f∂∂
+ + =

∂ ∂f
…eqn. 15.1

Similarly ∑Fy = 0, gives

x
x x

N N
N d dx N dx N dx Rd N Rd YRdx d

x
f f

f f f f f
∂ ∂Ê ˆ Ê ˆ

+ f - + + f - + fÁ ˜Á ˜ Ë ¯∂f ∂Ë ¯

Simplifying and dividing throughout by Rdxdφ, we get,

1
0

xN N
Y

x R
f f∂ ∂
+ + =

∂ ∂f
…eqn. 15.2

Consider the equilibrium of forces in z-direction.
i.e. ∑Fz = 0 →
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sin sin 0.
2 2

dx d
N dx N dx ZdxRd+
f f

fÊ ˆ + + f =Á ˜Ë ¯

Since, dφ is small angle, sin
2 2

d df fÊ ˆ =Á ˜Ë ¯

0
2 2

N d d
N d N Z Rdx d

f
f f

∂Ê ˆ f f
+ f + + f =Á ˜∂fË ¯

Neglecting small quantity of higher order, we get,
Nφ + ZR = 0 …eqn. 15.3

Taking moment about z-axis through the centre of element, we get

0
2 2 2 2x x x x
dx dx Rd Rd

N Rd N Rd N dx N dx+ +
f f f f

f ff + f - - =

Substituting for N+
xφ and N+

φx and then neglecting small quantities of higher order, we get,
Nxφ

 = Nφx.
Hence, the equations of equilibrium are

and

0

0

 0

xx

x

NN
X

x Rd
N N

Y
x Rd

N ZR

f

f f

f

∂ ¸∂
+ + = Ô∂ f ÔÔ∂ ∂ ˝+ + = Ô∂ f Ô+ = Ǫ̂

…eqn. 15.4

For any given loading the above three equations of equilibrium can be solved to get the membrane
forces. Nx, Nφ and Nxφ.

Example 15.1. Find the expressions for membrane forces in a circular cylindrical shell roof subjected
to self weight only.

Solution.
Self weight be g/unit surface area.

Then its X, Y, Z components are given by (Ref. Fig. 15.2)
X = 0
Y = g sinφ
Z = g cosφ

From third equation of equilibrium, we get,
Nφ = −ZR = −gR cosφ

From second equation of equilibrium,

0
xN N

Y
x R
f f∂ ∂
+ + =

∂ ∂f

( )( )1
sin sin 0

xN
gR g

x R
f∂
+ - - f + f =

∂
Fig. 15.2

y

g
z

�

�
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i.e. 2 sin
xN

g
x
f∂
= - f

∂
Integrating w.r.t. x on both side we get,

  ( )12 sinxN gx ff = - f + f

where f1(φ) is constant of integration.
The boundary condition is,
at       x = 0, Nxφ = 0 due to symmetry.
From this condition, we get,

      0 = 0 + f1(φ).
∴    Nxφ = −2gx sinφ
From equation of equilibrium (1), we have

( )1
2 sin 0xN

gx
x R

∂ ∂
+ - f =

∂ ∂f

i.e.
1

2 cosxN
gx

x R

∂
= f

∂

∴   ( )
2

2
1

2 cos
2x
x

N g f
R

Ê ˆ
= f + fÁ ˜Ë ¯

       ( )
2

2cos
gx

f
R

= f + f

where f2(φ) is the constant of integration.
Boundary condition: Since the end frame is assumed to be simple support, at x = L/2, Nx = 0

    ( )
2

20 cos
4

g L
f

R
= f + f

or                     ( )
2

2 cos
4

g L
f

R
f = - f

Hence,
2 2

cos cos
4x

gx g L
N

R R
= f - f

     
2 2

2

4
1 cos

4

gL x

R L

Ê ˆ
= - - fÁ ˜Ë ¯

Thus, the expressions for the membrane forces are

 Nφφφφφ = −−−−−gR cos φφφφφ
Nxφφφφφ = −−−−−2gx sin φφφφφ …eqn. 15.5

                                 and
Ê ˆ

- - fÁ ˜Ë ¯

2 2

x 2

gL 4x
N = 1 cos

4R L

¸
Ô
ÔÔ
˝
Ô
Ô
Ǫ̂
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Example 15.2. Determine the expressions for membrane forces in a circular cylindrical shell subject to
a snow load of p0/unit horizontal area.

Solution. Load is p0/unit horizontal area.
It is equal to p0 cosφ per unit surface (which can be easily seen from Fig. 15.3.)

1
P0

�

1
cos�

�

Fig. 15.3

∴ X = 0

Y = p0 cosφ. sinφ
Z = p0 cosφ. cosφ = p0 cos2φ

From equation of equilibrium (3),

  Nφ = −ZR = −p0 cos2φR

   = −p0R cos2φ

From equation of equilibrium in φ-direction,

1
0

xN N
Y

x R
f f∂ ∂
+ + =

∂ ∂f

i.e. ( ) ( )0 0
1

2cos sin cos sin 0
xN

p R p
x R
f∂
+ - f - f + f f =

∂

i.e. 03 cos sin
xN

p
x
f∂
= - f f

∂

∴   ( )0 13 cos sinxN p x Ff = - f f + f

Due to symmetry, at x = 0, Nxφ = 0

∴    0 = 0 + f1(φ).

Hence,                    Nxφ = −3p0x cosφ sinφ

 0
3

sin 2
2

p x= - f
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From equation of equilibrium in x-direction,

1
0.xx

NN
X

x R
f∂∂

+ + =
∂ ∂f

i.e. 0
1 3

2cos2 0
2

xN
p x

x R

∂ Ê ˆ+ - f =Á ˜Ë ¯∂

or 03 cos2xN p x

x R

∂ f
=

∂

∴   ( )
2

0
2

3
cos2

2x
p x

N f
R

= f + f

As end frames are treated as simple supports, at x = L/2, Nx = 0.

∴      ( )
2

0
2

3
0 cos2

8

p L
f

R
= f + f

or ( )
2

0
2

3
cos2

8

p L
f

R
f = - f

Hence,    
2 2

0 03 3
cos2 cos2

2 8x
p px L

N
R R

= f - f

        
2 2

0
2

3 4
1 cos2

8

p L x

R L

È ˘
= - - fÍ ˙

Î ˚
Thus in this case

    Nφφφφφ = − p0R cos2 φ

 
f = - fk 0

3
N p x sin 2

2
…eqn. 15.6

and   
Ê ˆ

= - - fÁ ˜Ë ¯

2 2
0

x 2

p L 4x
N 3 1 cos 2

8R L

Example 15.3. Find the membrane forces in a circular cylindrical shell subject to a sinusoidal loading

of intensity 
4

cos
g x

L

p
p

 per unit surface area acting vertically downward.

Solution. Now vertical downward load intensity

       = 
4

cos
g x

L

p
p

 per unit surface area

[Note: It is first term of equivalent Fourier series for self weight].
Load components are,

    X = 0
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4

cos sin
g x

Y
L

p= ◊ f
p

 
4

cos cos
g x

Z
L

p= f
p

From third equation of equilibrium,

4
cos cos

gR x
N ZR

Lf
p

= - = - f
p

From the equation of equilibrium in φ-direction,

     
1

0,  we get,xN N
Y

x R
f f∂ ∂

= + + =
∂ ∂f

( )1 4 4
cos sin cos sin 0.

xN gR x g x

x R L L
f∂ p pÊ ˆ+ - - f + f =Á ˜Ë ¯∂ p p

8
cos sin

xN g x

x L
f∂ p= - f

∂ p

∴   ( )1
8

sin sinx
g L x

N f
Lf
p

= - ◊ ◊ f + f
p p

Due to symmetry at x = 0, Nxφ = 0

∴       0 = 0 + f1(φ) i.e. f1(φ)  = 0

∴  2

8
sin sinx

g x
N L

Lf
p= - ◊ f

p
From equation of equilibrium in x-direction,

1
0

xx
NN

X
x R

f∂∂
+ + =

∂ ∂f

i.e. 2

1 8
sin cos 0xN gL x

x R L

∂ pÊ ˆ+ - f =Á ˜Ë ¯∂ p

∴ 2

8
sin cosxN gL x

x LR

∂ p= ◊ f
∂ p

  22

8
cos cosx

gL L x
N f

LR

pÊ ˆ= ¥ - f + fÁ ˜Ë ¯pp

       ( )
2

23

8
cos cos

gL x
f

LR

p= - ◊ f + f
p

At , 0.
2 x
L

x N= =
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∴   ( )20 0 f= + f

∴
2

3

8
cos cosx

gL x
N

LR

p
= - ◊ f

p
Thus in this case,

 f
p= - f

p
4gR x

N cos cos
L

f
p= - ◊ f

px 2

8gL x
N sin sin

L
...eqn. 15.7

and  
p

= - ◊ f
p

2

x 3

8gL x
N cos cos

LR

15.2 CYLINDRICAL SHELLS WITH PARABOLIC, CATENARY AND CYCLOID
DIRECTRICES

Intrinsic equation is that equation which relates radius of curvature and the angle. It is interesting to
note that the intrinsic equations for parabolic, catenary, circular and cycloid are having general form.

R = R0 cosnφ
where Ro—radius of curvature at crown (φ = 0)

If n = −3, it is parabolic

= −2, it is catenary

= 0, it is circular, and

= 1, it is cycloid.

The shapes of these curves look as shown in Fig. 15.4.

Circular

Parabolic

Cycloid

Catenary

R0

�

�k

�k

Fig. 15.4

Hence, it is possible to get membrane solution for all the above 4 cases in the general form. The
examples 15.4 and 15.5 illustrate this point.
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Example 15.4 Give membrane analysis of cylindrical shells with parabolic, catenary, circular and
cycloid subject to self weight g/unit surface area.

Solution. For self weight,           X = 0
Y = g sin φ
Z = g cos φ

From equation of equilibrium of forces in z-direction,
Nφ = −ZR

= − g cos φ.R0 cosnφ
= − gR0 cosn+1φ

From equation of equilibrium of forces in φ-direction, we have

1
0xN N

Y
x R
f f∂ ∂
+ + =

∂ ∂f

( )( ) ( )0
1

1 cos sin sin 0
x nN

gR n g
x R
f∂
+ - + f - f + f =

∂

( ) 0

0

1
cos sin sin 0

cos

x n
n

N n gR
g

x R

f∂ +
+ f f + f =

∂ f

i.e. ( )2 sin 0
xN

n
x
f∂
+ + f =

∂

i.e. ( )2 sin
xN

g n
x
f∂
= - + f

∂
Integrating both sides w.r.t. x, we get,

Nxφ = −gx(n + 2) sin φ + f1(φ)
where f1(φ) is constant of integration.

The boundary condition is, due to symmetry, at x = 0, Nxφ = 0.
i.e.    0 = 0 + f1(φ) i.e. f1(φ) = 0.
Hence, Nxφ = −gx (n + 2) sin φ

From the equation of equilibrium of forces in x-direction, we have,

1
0.

xx
NN

X
x R

f∂∂
+ + =

∂ ∂f

i.e. ( )( )
0

1
2 cos 0

cos
x

n

N
gx n

x R

∂
+ ◊ - + f =

∂ f

i.e.
( )

1
0

2

cos
x

n

N gx n

x R -
∂ +=
∂ f

∴    Nx
 

( ) ( )
2

21
0

2

2 cosn

gx n
f

R -
+= + f

f
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As end frames are assumed as simple supports,

at    , 0.
2 x
L

x N= =

i.e.    
( ) ( )

2

21
0

2
0

8 cosn

gL n
f

R -
+= + f

f

or                     ( ) ( )2

2 1
0

2

8 cosn

gL n
f

R -
+

f = -
f

∴                         Nx
 

( ) ( )2 2

1 1
00

2 2

82 cos cosn n

gx n gL n

RR - -
+ += -

f f

     
( )2 2

1 2
0

2 4
1

8 cosn

gL n x

R L-

Ê ˆ+= - -Á ˜Ë ¯f
Thus,

 f - fn+1
0N = gR cos

( )f - fxN = gx n + 2 sin …eqn. 15.8

 
( )

-

Ê ˆ
- -Á ˜Ë ¯f

2 2

x n 1 2
0

gL n + 2 4x
N = 1

8R cos L

n = −3 is for parabolic, n = −2 is for catenary, n = 0 is for circular and n = 1 is for cycloid.

Example 15.5. Find the membrane forces in the cylindrical shells with parabolic, catenary, circular and
cycloid directrices due to snow load of intensity p0 per unit horizontal area.

Solution. Let the intrinsic equation be R = R0 cosnφ
Snow load of p0/per unit horizontal area

   = p0 cosφ/per unit surface area
∴ Load components are

X = 0
Y = p0 cosφ sinφ
Z = p0 cos2φ

From the equation of equilibrium of forces in z-direction, we get,

 N ZRf = -

  2
0 0cos cosnp R= - f ◊ f

  2
0 0 cosnp R += - f

From the equation of equilibrium of forces in φ-direction, we get,

1
0

xN N
Y

x R
f f∂ ∂
+ + =

∂ ∂f
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( )( ) ( )1
0 0 0

0

1
2 cos sin cos sin 0
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x n
n

N
p R n p

x R

f +∂
+ ◊ - + f - f + f f =

∂ f

i.e. ( )0 02 sin cos cos sin 0
xN

p n p
x
f∂
+ + f f + f f =

∂

i.e. ( )0 3 sin cos
xN

p n
x
f∂
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∂
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0
3

sin 2
2

n
p

+= - f

∴   
( ) ( )0

1
3

sin 2 .
2x

p x n
N ff

+
= - ¥ f + f

From boundary condition, Nxφ = 0 at x = 0, we get,

      ( ) ( )1 10 0  or 0f f= + f f =

∴   
( )0 3

sin 2
2x

p x n
N f

+
= - f

From the equation of equilibrium of forces in x-direction, we have

  
1

0x
NN

X
x R

f∂∂
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∂ ∂f

i.e.   ( )0
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2cos2 0
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0

cos2
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x
N p n f

R
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f

From the boundary condition, Nx = 0 at x = L/2, we get,

    ( ) ( )
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0 2
0
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0 3 .

8 cosn

L
p n f

R

f= + + f
f

 ( ) ( )
2

2 0
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cos2
3

8 cosn

L
f p n

R
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f

Hence,             ( ) ( )
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0 0

0 0

cos2 cos2
3 3
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x n n

p x P L
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R R
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      ( )
2 2

0
2

0

cos2 4
3 1

8 cosn

p L x
n

R L

Ê ˆf= - + -Á ˜Ë ¯f

Thus, the solution is

 f - fn+2
0 0N = p R cos

( )
f

- +
= f0

x
p x n 3

N sin 2
2

… eqn. 15.9

 ( ) Ê ˆf= - + -Á ˜Ë ¯f

2 2
0

x n 2
0

p L cos 2 4x
N n 3 1

8 R cos L

n = −3 is for parabolic

n = −2 is for catenary

n = 0 is for circular and

n = 1 is for cycloid

The membrane forces for cylindrical shells with different directrices due to self weight and snow
load are shown in Table 15.1.

Table 15.1 Membrane forces

Directrix Nφ Nxφ Nx

DL SL DL SL DL SL

Parabolic 2

1

cos
-

f
1

cos
-

f sin φ 0 cos4φ 0

n = −3

Catenary
1

cos
-

f −1 0
sin 2

2

f
- 0 −cos2φ cos2φ

n = −2

Circular −cosφ −cos2φ −2sin φ
3

sin 2
2

- f −2cosφ −3cos2φ

n = 0

Cycloid −cos2φ −cos3φ −3sin φ −2sin2φ −3
4cos2

cos

f-
f

n = 1

Common gR0 p0R0 gx p0x
2 2

2
0

4
1

8

gL x

R L

Ê ˆ
-Á ˜Ë ¯

2 2
0

2
0

4
1

8

p L x

R L

Ê ˆ
-Á ˜Ë ¯

multiplying

factor
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15.3 CYLINDRICAL SHELL WITH SEMI-ELLIPTIC DIRECTRIX
Figure 15.5 shows a semiellipse with major axis = 2a and minor axis = 2b. Its radius of curvature at any
central angle φ is given by

( )
2 2

3 22 2 2 2sin cos

a b
R

a b
=

f + f

b

a a

�

R

Fig. 15.5

(1) For self weight X = 0, Y = g sin φ, Z = g cos φ
From equation of equilibrium for forces in z-direction, we have

Nφ = −ZR

   ( )
2 2

3 22 2 2 2

cos

sin cos

a b
g

a b

f= -
f + f

From equation of equilibrium in φ-direction,

1
0

xN N
Y

x R
f f∂ ∂
+ + =

∂ ∂f

∴
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( )

3 22 2 2 2
2 2

2 2 3 22 2 2 2

sin cos sin

sin cos

xN a b
ga b

x a b a b

f∂ f + f - fÈ= - Í∂ f + fÍÎ

           ( ) ( )( )5 22 2 2 2 2 23
cos sin cos 2 sin cos 2 cos sin

2
a b a b

- ˘+ f f + f f f + f - f ˙̊

        
( )
( )

2 2 2 2

2 2 2 2

3 cos cos
sin 1 1

sin cos

a b
g

a b

È ˘f - f
Í ˙= - f + +
Í ˙f + fÎ ˚
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∴
( ) ( )

2 2 2

12 2 2 2
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sin cos
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a b
N gx f

a b
f

È ˘- f
= - f + + fÍ ˙

f + fÍ ˙Î ˚

[Note: In differentiating φ, u = cos φ and ( ) 3 22 2 2 2sin cos .v a b
-

= f + f  Hence, ( )d
uv

dx
]

At     x = 0, Nxφ = 0 (due to symmetry)
∴ f1(φ) = 0

∴
( )2 2 2

2 2 2 2

3 cos
sin 2

sin cos
x

a b
N gx
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f

È ˘- f= - f +Í ˙
f + fÍ ˙Î ˚

From equation of equilibrium of forces in x-direction, we have
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x R
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gx
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È ˘Ï ¸- a= f + f - fÍ ˙Ì ˝
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where     ( )3 22 2 2 2sin cos

ab

a b
a =

f + f

∴  
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2 2 2 2
2 2

23 2

2 3 2
cos cos sin

2x
gx ab a b

N f
ab b

È ˘Ï ¸- a= f + f - f + fÍ ˙Ì ˝
aÍ ˙a Ó ˛Î ˚

From B-C, Nx = 0 at x = L/2, f2(φ) may be found and on simplification we get,

( )2 2 2 2 2
2 2

2 3 2

4 2 3 2
1 cos cos sin

8x
gL x ab a b

N
abL b

È ˘Ê ˆ È ˘- - a= - f + f - fÍ ˙ Í ˙Á ˜Ë ¯ aaÎ ˚ Î ˚
(2) For snow load:

Let snow load be p0 per unit horizontal load. Then
X = 0,   Y = p0 cos φ sin φ    Z = p0 cos2φ

Proceeding on the same line as earlier, it can be shown that
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2 2 2

0 2 2 2 2
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sin cos

a b
N p

a b
f
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f + f

2

0 2 2 2 2

cos sin
3

sin cos
x
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N p x

a b
f
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f + f
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0
2 1 22 2 2 2

3 4 cos sin
1

8 sin cos
x

p L x b a
N
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15.4 COMMENTS ON MEMBRANE THEORY
1. A thin shell acts partially as an arch and partially as a beam. Due to arch action (in the form of

Nφ) the load is transferred to edge beam and due to beam action (in the form of Nxφ) the load is
transferred to the end frame.

2. If the directrix choosen is the funicular curve of the applied loading (catenary for self weight and
parabola for snow load), the shell degenerates itself into a series of independent arches and beam
action completely disappears.

3. The distribution of longitudinal force Nx across the cross section is not linear as in an ordinary
beam, except in the case of circular directrix under self weight.

4. The variation of Nφ is independent of x.
5. For a shell with free edges, Nφ and Nxφ should be zero at edges. But membrane theory gives

definite values. The membrane theory fails to give good results at edges.
In actual shells, edges bend in transverse direction (to avoid these unbalanced forces) introducing

transverse moment Mφ and radial shear. Earlier research was to assess these edge perturbations and
superpose them with membrane values.

QUESTIONS

1. Derive the differential equations of equilibrium using membrane forces only. Find the stresses Nx, Ny and Nxy

due to uniformly distributed load acting on the shell surface.
2. Find the membrane stresses in a circular cylindrical shell subject to snow load.
3. Find the membrane forces in a circular cylindrical shell subject to a sinusoidal load.
4. What is intrinsic equation? Give it for

(a) Circular
(b) Conoid
(c) Parabolic and
(d) Catenary directrices.
Derive the general membrane solution for above type of cylindrical shells subjected to self weight only.

5. Comment on membrane theory for cylindrical shells.
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Bending Theory of Cylindrical
Shell Roofs

In the previous chapter, we have seen that membrane theory do not satisfy the edge conditions. This was
realized as early as in 1930. Though considerable load transfer in shells is by membrane action, bending
is not completely avoided. The moments and transverse shears act on the shell element. Hence, in
deriving the equilibrium equations for elements, moments and transverse shears should be considered.
Finsterwalder and Dishinger of Germany gave a bending theory in 1930. Schorer of America gave a
simplified solution in 1936. The contributions of Donnel (1933–34), Karman (1941) and Jenkins (1947)
lead to the bending theory known as DKJ theory which can be applied to circular cylindrical shells of
all dimensions. In this chapter, shell element and forces acting on it are explained, making sign conven-
tions clear. Then equations of equilibrium are derived and relations between stress resultants and radial
displacement ‘w’ are derived. As it is highly impossible to go ahead with exact relations to find the
solution, the assumptions made by various researchers are presented and the solution by Schorer and
DKJ are presented. Statical checks to be applied are also presented.

16.1 A TYPICAL SHELL ELEMENT
A typical shell element and various forces acting on it are shown in Fig. 16.1.

The coordinate system x, y, z is same as the one selected in membrane theory.
In the figure, all forces and moments are shown in their positive senses. It may be noted that the sign

convention followed is that on positive face if the force is acting in positive direction, it is positive. At
the same time, if the force is acting in negative direction on negative face, then also it is positive force.
The moments are positive if they are produced by positive forces acting in positive direction of z. This
convention results into tensile forces and sagging moments as positive. For shears and twisting moment
one should carefully note the sign conventions used. It is obvious that in the element shown:
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+ ∂
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∂f

x
x x

N
N N dx

x
f+

f f
∂

= +
∂

x
x x

M
M M dx

x
f+

f f
∂

= +
∂

Chapter

16
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x
x x

N
N N d

f+
f f

∂
= + f

∂f
x

x x

M
M M d

f+
f f

∂
= + f

∂f

x
x x

Q
Q Q dx

x
+ ∂
= +

∂
,  ,   are the load components in ,  ,   

directions respectively.
X Y Z x y z

Q
Q Q d

f+
f f

∂
= + f

∂f

16.2 EQUATIONS OF EQUILIBRIUM
Three equations of equilibrium can be found by considering force equilibrium in x, y and z directions
and another three by considering moment equilibrium. It may be noted that all forces and moments
shown on the element are in per unit length.
∑ Forces in x-direction = 0 →

0
xx

NN
X

x R
f∂∂

+ + =
∂ ∂f …eqn. 16.1

∑ Forces in y-direction = 0 →

x
x

N N
N d dx N dx N dx Rd

x
f f

f f f
∂ ∂Ê ˆ Ê ˆ

+ f - + + fÁ ˜Á ˜ Ë ¯∂f ∂Ë ¯

2 2x

Qd d
N Rd Q dx Q d dx

f
f f f

È ˘∂Ê ˆf f- f - + + fÍ ˙Á ˜∂fË ¯Í ˙Î ˚
0.YdxRd+ f =

Neglecting small quantities of higher order and dividing throughout by Rdxdφ, we get,

0
xN N Q

Y
x R R
f f f∂ ∂
+ - + =

∂ ∂f …eqn. 16..2

∑ Forces in z-direction = 0 →

x
x x

QQ
Q dx R d Q Rd Q d dx

x
f

f
∂Ê ˆ∂Ê ˆ+ f - f + + fÁ ˜ Á ˜Ë ¯∂ ∂fË ¯

0
2 2x

N d d
Q dx N d dx N dx Zdx Rd

R
f

f f
∂Ê ˆ f f

- + + f + + f =Á ˜∂fË ¯

Neglecting small quantities of higher order and dividing throughout by Rdxdφ, we get,

0x
Q NQ

Z
x R R

f f∂∂
+ + + =

∂ ∂f
…eqn. 16.3

Now consider the moment equilibrium conditions.
∑ Moments in x-direction = 0 →
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xx

x x x

MM
M dx R d M R d M d dx

x
f

f
∂Ê ˆ∂Ê ˆ+ f - f + + fÁ ˜ Á ˜Ë ¯∂ ∂fË ¯ 0x xM dx Q Rd dxf- - f =

Simplifying we get,

1
0

xx
x

MM
Q

x R
f∂∂

+ - =
∂ ∂f …eqn. 16.4

∑ Moments in y-direction = 0 →

we get,
1

0
xM M

Q
x R
f f

f
∂ ∂

+ - =
∂ ∂f …eqn. 16.5

∑ Moments about z-axis = 0, gives

0
2 2

x
x x x x

M d d
M d dx M dx N Rd dx N dx Rd

f
f f f f

∂Ê ˆ f f+ f + + f - f =Á ˜∂fË ¯

Neglecting small quantities of higher order and dividing throughout by Rdxdφ, we get

0
x

x x

M
N N

R
f

f f+ - = …eqn. 16.6

Thus we have got six equations of equilibrium and 10 unknowns i.e. Nx, Nφ, Nxφ, Nφx, Qx, Qφ, Mx, Mφ,
Mxφ and Mφx. Hence, the problem is not statically determinate. After studying deformations all stress
resultants are expressed in terms of single displacement i.e. ‘w’ in z-direction. Then a shell equation is
derived in terms of ‘w’ only, which will be 8th order differential equation. Solution of that equation
satisfying the boundary conditions gives expression for ‘w’, using which any stress resultant can be
found.

16.3 DEFORMATION IN SHELL
Let the origin of the coordinate system be at the crown of mid-span section. Let

x – be in the longitudinal direction
y or φ – be in the tangential direction and
z – be in the radial inward direction.

Consider the point A with coordinates x, φ and z, all having positive values. Let uA—displacement in
longitudinal direction, positive in the direction of increasing x.

vA— displacement along a circle of radius (R − z), positive in the direction of increasing φ and
wA— radial displacement, positive in the inward direction.
Let u, v and w be the displacement of the middle surface of the point which has also the coordinates

x and φ, but z = 0. The relations among these displacements will be derived first, considering the shell
is thin. The following additional assumptions are also made:

1. All points lying on a normal to the middle surface before deformation, do the same after defor-
mation also. In other words, shear deformations are considered negligible.

2. The stresses in radial direction (σz) is considered negligible and hence, the deformation in
z-direction is negligible. In other word point A remains at distance z even after deformation.

3. All displacements are small i.e. they are negligible compared to the radius of curvature of the
middle surface and that their first derivatives i.e. slopes are negligible compared with unity.



BENDING THEORY OF CYLINDRICAL SHELL ROOFS 201

In short, we are considering small deflection theory of thin shells.
(i) Relation between uA and u

A0 and A are the original positions of two points (Ref. Fig. 16.2). A0 is on the middle surface
and A is at a distance z from A0 on the normal to the surface. After deformation let the points
move to the positions A0′ and A′ respectively. According to the assumptions even now A′ is on
normal to the middle surface and is at a distance z. From the figure, it is easily seen that,

A
w

u u z
x

∂= -
∂

…eqn. 16.7

u

uA

z

A

�

z axis
z dw

dx
A�

dw
dxA0

�

x axisA0

Bent middle
surface

Fig. 16.2

(ii) Relation between vA and v
Figure 16.3 shows a transverse section through the shell. The point A0 on the middle surface
is displaced by v along the middle surface to point A0′. The point A which was at distance z
from A0 is displaced to A′ and it remains at right angles to middle surface at A0′.

�

A0
�

A

A�
A�

�A

z dw
Rd�

B

B0

w

dw

A0

Fig. 16.3
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Let A″ be at right angles to middle surface at A0′ at a distance z. Then the displacement of A may be
looked as consists of two parts:

(i) A moves to A″ due to shortening of radius
R z

v
R

-=

(ii) Then A″ moves to A′ due to rotation by angle
w

R

∂
∂f

 i.e. by a distance
w

z
Rd

∂
f

∴
1

A
R z w

v v Z
R R

- ∂= -
∂f

…eqn. 16.8

(iii) Relation between wA and w
Since, the shell is assumed thin and displacements are considered small, we get,

wA = w. …eqn. 16.9

16.4 STRAIN DISPLACEMENT RELATIONS
As a next step in assembling shell equation, we establish strain-displacement relations.

dx

u

A0 B0

A0
′

B0
′

u + ∂u
∂x

dx

Fig. 16.4

Consider an element AB of length dx at the middle surface. Referring to Fig. 16.4, after deformation
let the element A0B0 move to the position A0′B0′. Let A0 move by distance u in x-direction. Then B0

moves by some other distance. If the rate of change of this displacement is ,
u

x

∂
∂

then BB′ is equal to

.
u

u dx
x

∂+
∂

∴ Strain εxc in x-direction is given by

Extension

Original Lengthxc

u
u dx u

x
dx

∂+ -
∂e = =

     
u

x

∂=
∂

∴ At A,

A
x

u

x

∂
e =

∂
…eqn. 16.10
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Referring to Fig. 16.5, the strain at middle surface in φ-direction is given by,

c

v
v d v

w

Rd Rf

∂+ f -
∂fe = -

f

     
1 v

w
R

∂Ê ˆ= -Á ˜∂fË ¯

[Note: 
w

R
 is shortening due to radial

inward displacement w].

∴ At A,

1 A
A

v
w

R zf
∂Ê ˆe = -Á ˜- ∂fË ¯

…eqn. 16.11

Referring to Fig. 16.6, in which shear deformations are shown in their positive senses, we get,

1
x c

v v

x Rf
∂ ∂g = +
∂ ∂f

∴ At A,

1A A
x

v u

x R zf
∂ ∂

g = +
∂ - ∂f

…eqn. 16.12

From eqns. 16.7 and 16.10, we get,

 
2

2
A

x
u v w

Z
x x x

∂ ∂ ∂e = = -
∂ ∂ ∂

…eqn. 16.13

From eqns. 16.8 and 16.11, we get

( )
2

2

1 v Z w w

R R R z R Zf
∂ ∂e = - -
∂f - -∂f

    

2

2
2

1

1 1

v Z w w

Z ZR
R R

R R

∂ ∂
= - -

∂f Ê ˆ Ê ˆ∂f- -Á ˜ Á ˜Ë ¯ Ë ¯
…eqn. 16.14

Similarly from eqns. 16.9 and 16.12, we get

21
x

u R Z v Z Z w

R Z R x R R Z xf
∂ - ∂ ∂Ê ˆg = + - +Á ˜Ë ¯- ∂f ∂ - ∂ ∂f

     
2

2

1 1 1
1 1

11

u Z v w
ZZ R R

R
RR

∂ ∂ ∂Ê ˆ Ê ˆ= + - - +Á ˜ Á ˜Ë ¯∂f ∂fÊ ˆ ∂f-- Á ˜Á ˜ Ë ¯Ë ¯

…eqn. 16.15

Fig. 16.5

Fig. 16.6
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16.5 RELATIONS BETWEEN STRESS RESULTANTS AND DISPLACEMENTS
For stress analysis linear elastic theory is used. Hence, from Hooke’s law,

( )21
x x

E
fs = e + me

- m
…eqn. 16.16

( )21
x

E
f fs = me + e

- m
…eqn. 16.17

and ( )2 1xy x
E

ft = g
+ m …eqn. 16.18

In the equations 16.16 to 16.18, by substituting the relations of strains with displacements
(eqns. 16.13 to 16.15) we get stress-displacement relations.

Now consider an element of unit dimension at middle section as shown in Fig. 16.7. At any distance
z from the middle surface the length of element in x-direction is unity but in φ-direction, it is different.

Referring to the Fig. 16.6,

1Rdf =

or   
1

d
R

f =

1

R

R
Z

�

d�

Middle surface

Surface at distance - z

Fig. 16.7

Elemental length in φ-direction at distance z from middle surface

( )R Z d= - f

( ) 1
R Z

R
= -

1
Z

R

Ê ˆ= -Á ˜Ë ¯
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Hence, the stress resultants per unit length are as shown below:

 

2

2

1
h

x x
h

Z
N dz

R-

Ê ˆ= s -Á ˜Ë ¯Ú  

2

2

1
h

h

N dzf f
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= s ¥ ¥Ú
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x x
h

Z
N dz

Rf f
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1
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2
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1
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h

Z
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2

2

1
h

h

M z dzf f
-
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Z
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Rf f
-

Ê ˆ= t -Á ˜Ë ¯Ú
2

2

1
h

x x
h

M z dzf f
-

= t ¥ ¥ ¥Ú

In the above expressions by replacing stresses in terms of strains and then in terms of displacements,
stress resultants are obtained in terms of displacement. For example,

2

2

1
h

x x
h

Z
N dz

R-

Ê ˆ= s -Á ˜Ë ¯Ú

( )
2

2
2

1
1

h

x
h

E Z
dz

Rf
-

Ê ˆ= e + me -Á ˜Ë ¯- m Ú
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2 2 2
2

1
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E u w v Z w w Z
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x R R R Z R Z Rx-

Ê ˆ∂ ∂ m ∂ m ∂ Ê ˆ= - + - - m -Á ˜Á ˜ Ë ¯∂ ∂f - -- m ∂ ∂fË ¯Ú
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2 2 2

2 2 2 2
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1
1 1 1
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E u w v Z w w Z
Z dz

Zx R Rx R Z R R
R

-
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2 2 2

2 2 2 2
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1
1

h

h

E u w v Z Z w w
z dz

x R R Rx R-

È ˘Ê ˆ∂ ∂ m ∂ m ∂ mÊ ˆ= - + - - -Í ˙Á ˜Á ˜Ë ¯∂ ∂f- m ∂ ∂fË ¯Í ˙Î ˚
Ú

Now rearranging by collecting terms without z, with z and with z2, we can write

2 2 2 2

2 2 2
21

h

x
h

E u v w Z u v w Z w
N dz

x R R R x R R R x-

È ˘Ê ˆ∂ m ∂ m ∂ m ∂ m ∂ ∂Ê ˆ= + - - + - +Í ˙Á ˜Á ˜∂ ∂f ∂ ∂fË ¯- m ∂f ∂Ë ¯Í ˙Î ˚
Ú

Noting that integration in the limits  to 
2 2

h h-
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(a) of 1 is h

(b) of z is 0

(c) of z2 is 
3

,
12

h
 we find

3 2

2 2121
x

E u v w h w
N h

x R R R x

È ˘∂ m ∂ m ∂Ê ˆ= + - +Í ˙Á ˜∂ ∂fË ¯- m ∂Í ˙Î ˚

     
2

2 21

Eh u v w D w

x R R R x

∂ m ∂ m ∂Ê ˆ= + - +Á ˜∂ ∂fË ¯- m ∂
…eqn. 16.19

where  ( )
3

212 1

Eh
D =

- m
 is flexural rigidity

To find Nφ,

2
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     ( )
2

2
2 1

h

x
h

E
dzf

-

= e + me
- mÚ

     ( )

2 2 2

2 2 2
2

1

1

h

h

E v Z w w u w
z dz

R R R Z R Z x x-

È ˘Ê ˆ Ê ˆ∂ ∂ ∂ ∂= - - + m -Í ˙Á ˜Á ˜ Ë ¯∂f - - ∂- m ∂f ∂Ë ¯Í ˙Î ˚
Ú

     

2 2 2

2 2 2
2

1 1
1

1

h

h

E v u R w w w
Z dz

R x R R Z R Z x-

È ˘∂ ∂ ∂ ∂Ê ˆ Ê ˆ= + m + - - - mÍ ˙Á ˜Á ˜ Ë ¯∂f ∂ - -Ë ¯- m ∂f ∂Í ˙Î ˚
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Note that
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Noting that ( )
2 3 4

log 1 ...
2 3 4

x x x
x x+ = - + - +
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and ( )
2 3 4

log 1 ...
2 3 4

x x x
x x

È ˘
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Î ˚

We find           
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3
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Integration of 1 results into h and integration of Z results into zero.
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…eqn. 16.20

Proceeding on the same line all stress resultants can be obtained as shown below:
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      ( )
21 1

1x
w v

M D
R x R xf

È ˘∂ ∂= - - m +Í ˙∂ ∂f ∂Î ˚
The above relations are known as ‘Stress Resultants to Flugge’s Accuracy’.

16.6 SIMPLIFIED STRESS RESULTANTS AND DISPLACEMENT RELATIONS
As it is very difficult to make use of the stress resultants to Flugge’s accuracy, researchers made
assumptions to form shell equations. Usual assumptions are (i) to consider the strains across a section
uniform (ii) take the value of Poisson’s ratio µ = 0. Finsterwalder and Schorer went a step forward and
assumed Mx = 0 and Mxφ = 0. Table 16.1 shows the simplified stress resultant – displacement relations
assumed by different researchers. It may be noted that except Holland, other three have omitted the
terms which do not figure in ‘Disk action, Plate action and Membrane action’.

16.7 DKJ THEORY
The assumptions Mx = Mxφ = 0, make Finsterwalder and Schorer theories applicable only to long shells.
Holland and DKJ theories can be applied to all classes of shells. However, DKJ theory is commonly
used shell theory.

In 1933-34, Donnel developed the theory for his studies on stability of thin walled circular cylinders.
Kármán and Tsien employed the same theory in 1941 for their investigations on the buckling of cylin-
drical shells. In 1947, Jenkins published a book in which he presented the theory developed by Donnel
and Kármán in the form suitable for the analysis of cylindrical shell roof. Hence, the theory in now
known as Donnel-Kármán-Jenkins in short DKJ theory.

Table 16.1 Simplified stress resultants—Displacement relations

Stress resultant Finsterwalder Schorer Holland DKJ

Nx

u
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x

∂
∂

v
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∂
∂
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∂
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∂
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∂
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∂
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∂
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D
R x R x

Ê ˆ∂ ∂
- +Á ˜∂ ∂f ∂Ë ¯

2D w

R x

∂-
∂ ∂f

In this theory (and also in Shorer’s theory) the term Qφ appearing in equation of equilibrium 16.2 is
dropped, since such term do not appear in the corresponding equation of equilibrium of disc, plate or
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the membrane shell. Hence, the equation is rewritten as,

1
0xN N

Y
x R
f f∂ ∂
+ + =

∂ ∂f
.

Since, in this theory, Nxφ is taken as equal to Nφx, equation of equilibrium 16.6 shows Mxφ = 0. But in

this theory Mxφ is taken as
2

.
D w

R x

∂-
∂ ∂f

 Thus, these is clear violation of fundamental principle of mechan-

ics. However, still this theory is used, since, Mxφ is generally small quantity.
Since, Nxφ = Nφx and Mxφ = Mφx, the theory is developed below using Nxφ for shearing forces and Mxφ

for twisting moment.
We have, now, the following equilibrium equations.

1
0

xx
NN

X
x R

f∂∂
+ + =

∂ ∂f
...(1)

1
0

xN N
Y

x R
f f∂ ∂
+ + =

∂ ∂f
...(2)

1
0x

Q NQ
Z

x R R
f f∂∂

+ + + =
∂ ∂f

...(3)

1
0

xx
x

MM
Q

x R
f∂∂

+ - =
∂ ∂f

...(4)

1
0

xM M
Q

x R
f f

f
∂ ∂

+ - =
∂ ∂f ...(5)

The following are the stress-resultant and displacement relations:

 x
u

N Eh
x

∂
=

∂ ...(6)

 
u w

N Eh
R Rf
∂Ê ˆ= -Á ˜∂fË ¯ ...(7)

1

2x x
Eh u v

N N
R xf f
∂ ∂Ê ˆ= = +Á ˜∂f ∂Ë ¯ ...(8)

 
2

2x
w

M D
x

∂= -
∂

...(9)

 
2

2 2

1 w
M D

R
f

∂= -
∂f ...(10)

and
2

x x
D w

M M
R xf f

∂= = -
∂ ∂f ...(11)
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Thus, we have 11 equations and number of unknowns are—

Nx, Nφ, Nxφ = 3

Qx, Qφ = 2

Mx, Mφ, Mxφ = 3

u, v and w = 3

Total 11
Hence, the problem can be solved.
From equation (5),

   
1xM M

Q
x R
f f

f
∂ ∂

= +
∂ ∂f

3 3

2 3 3

D w D w

R x R

∂ ∂= - -
∂ ∂f ∂f

2 2

2 2 2

1D w w

R x R

Ê ˆ∂ ∂ ∂= - +Á ˜∂f ∂ ∂fË ¯

( )2D
w

R

∂= - —
∂f ...(12)

From eqn. (4),

   
1 xx

x

MM
Q

x R
f∂∂

= +
∂ ∂f

3 3

3 2

1w D w
D

R Rx x

∂ ∂Ê ˆ= - + -Á ˜Ë ¯∂ ∂ ∂f
3 3

3 2 2

1x w
D

x R x

È ˘∂ ∂= - +Í ˙
∂ ∂ ∂fÍ ˙Î ˚

2 2

2 2 2

1w w
D

x x R

Ê ˆ∂ ∂ ∂= - +Á ˜∂ ∂ ∂fË ¯

 ( )2D w
x

∂= - —
∂ ...(13)

From eqn. (3),

x
QQ

N R ZR
x

f
f

∂∂
= - - -

∂ ∂f

( ) ( )2 2 2 2

2 2

w D w
R D ZR

Rx

∂ — ∂ —= + ◊ + -
∂ ∂f
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( ) ( )
2 2 2

2
2 2 2

1w
DR w ZR

x R

È ˘∂ — ∂= + — -Í ˙
∂ ∂fÍ ˙Î ˚

( )
2 2

2
2 2 2

1
DR w ZR

x R

Ê ˆ∂ ∂= + — -Á ˜∂ ∂fË ¯

( )2 2DR w ZR= — — -

( )4DR w ZR= — - ...(14)

From eqn. (2),

           
xN N

Y
x R
f f∂ ∂
= - -

∂ ∂f

( )4 Z
D w Y

∂ ∂= - — + -
∂f ∂f ...(15)

From eqn. (1),

xx
NN

X
x R

f∂∂
= - -

∂ ∂f

∴            

22

2

xx
NN X

R x xx

f∂∂ ∂= - -
∂ ∂f ∂∂

( )2 4 2

2 2

1D w Z Y X

R R xR

∂ — ∂ ∂ ∂= - + -
∂f ∂∂f ∂f ...(16)

Thus, now we have expressed all stress resultants in only one unknown ‘w’. To form compatibility
equations consider the force displacement equations 6, 7 and 8.

 x
u

N Eh
x

∂=
∂ ...(6)

 
1 u w

N Eh
R Rf
∂Ê ˆ= -Á ˜∂fË ¯ ...(7)

and
1

2x
Eh u v

N
R xf
∂ ∂Ê ˆ= +Á ˜∂f ∂Ë ¯ ...(8)

To eliminate v in the above equations:

             
21 1N v w

Eh
x R x R x
f∂ Ê ˆ∂ ∂= -Á ˜∂ ∂ ∂f ∂Ë ¯ ...(a)

       
2 2

2 2

1 1 1
2

xN u v
Eh

R R xR

f∂ Ê ˆ∂ ∂= +Á ˜∂f ∂ ∂f∂fË ¯ ...(b)
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Subtracting eqn. (b) from eqn. (a), we get,

      
2

2 2

1 1 1
2 xN N w u

Eh Eh
x R R x R

f f∂ ∂ ∂ ∂- = - -
∂ ∂f ∂ ∂f

      
2

2 2

1 1w u
Eh

R x R

È ˘∂ ∂= - +Í ˙∂ ∂fÍ ˙Î ˚
...(17)

To eliminate u from eqn. (6) and (17):

From eqn. 6,               
2 3

2 2 2 2

1 1xN u
Eh

R R x

∂ ∂= ◊
∂f ∂ ∂f

...(c)

From eqn. 17,   

2 2 2 3

2 2 2 2

2 1xN N w u
Eh

R xx R x R x

f f∂ ∂ È ˘∂ ∂- ◊ = - +Í ˙∂ ∂f∂ ∂ ∂ ∂fÍ ˙Î ˚
...(d)

Adding eqn. (c) and eqn. (d) we get,

2 22 2

2 2 2 2

1 2 xx
N NN w

Eh
R xx R R x

f f∂ ∂∂ ∂+ - = -
∂ ∂f∂ ∂f ∂

Differentiating both sides twice w.r.t. x we get,

4 44 4

4 2 2 2 3 4

1 2 xx
N NN Eh w

R Rx R x x x

f f∂ ∂∂ ∂+ - = -
∂ ∂ ∂f ∂ ∂f ∂

Substituting the values of
2

2
,  and x x

N N
N

x x

f
f
∂ ∂
∂ ∂

 from eqn. 14, 15 and 16, we get equations.

( ) ( )4 4 4 4 4 4 3 3

4 4 2 4 4 3 2

1 1w Z D w Z Y X
DR R

R Rx x R R x

È ˘∂ — ∂ ∂ — ∂ ∂ ∂- + - + -Í ˙
∂ ∂ ∂f ∂f ∂f ∂ ∂fÍ ˙Î ˚

( )4 4 4 3 4

2 2 2 2 2 4

2 w Z Y Eh w
D

R Rx y x x x

È ˘∂ — ∂ ∂ ∂- - + - = -Í ˙
∂ ∂ ∂ ∂f ∂ ∂f ∂Í ˙Î ˚

Dividing throughout by R and bringing load terms to right hand side, we get

( ) ( ) ( )4 4 4 4 4 4 4

4 2 2 2 4 4 2 4

2w w w Eh w
D

x R x R R x

È ˘∂ — ∂ — ∂ — ∂+ + +Í ˙
∂ ∂ ∂f ∂f ∂Í ˙Î ˚

4 4 4 3 3 3

4 4 4 2 2 2 4 3 2 2 2 2

1 2 1 2 1Z Z Z Y Y X

x R R x R R x R x

È ˘∂ ∂ ∂ ∂ ∂ ∂= + + - - +Í ˙
∂ ∂f ∂ ∂f ∂f ∂ ∂f ∂ ∂fÍ ˙Î ˚

i.e. ( )
4 3 3 3

4 4 4
4 4 3 2 2 2 2

1 2 1
Z

w Y Y X
D w Eh

x R R x R x

∂ ∂ ∂ ∂— — + = — - - +
∂ ∂f ∂ ∂f ∂ ∂f
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i.e.
4 3 3 3

8 4
2 2 4 3 2 2 2 2

1 1 2 1
Z

Eh w Y Y X
w

DR D x R R x R x

È ˘∂ ∂ ∂ ∂— + = — = - +Í ˙
∂ ∂f ∂ ∂f ∂ ∂fÍ ˙Î ˚

where ∇w
8 = ∇4(∇w

4)

   
4 4 4 4 4 4

4 2 2 2 4 4 4 2 2 2 4 4

2 2w w w

x R x R x R x R

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂= + + + +Á ˜ Á ˜∂ ∂ ∂f ∂ f ∂ ∂ ∂f ∂fË ¯ Ë ¯

   
8 8 8 8 8

8 2 6 2 4 4 4 6 2 6 8 8

4 6 4w w w w w

x R x R x R x R

∂ ∂ ∂ ∂ ∂= + + + +
∂ ∂ ∂f ∂ ∂f ∂ ∂f ∂f

Since 2
0, .

1

Eh
D Ehm = = =

- m

∴ The eqn. of shell is,

È ˘Ê ˆ∂ ∂ ∂ ∂— + = — - + +Í ˙Á ˜∂ ∂f ∂ ∂f ∂ ∂fË ¯Í ˙Î ˚

4 3 3 3
8 4

Z2 4 3 3 2 2 2

h w 1 1 1 Y 2 Y 1 X
w

D R RR I x R x R x
...eqn. 16.21

Equation 16.21 may be called as shell equation as per DKJ theory.
The solution of the above equation for given loading gives expression for w at any point and knowing

‘w’, any stress resultant may be found.

16.8 DETERMINATION OF PARTICULAR INTEGRAL FOR DEAD LOAD
Consider the case of dead load g/unit surface area. Expanding it in the form of Fourier series we get,

1,3,...

4
cos

m

n x
g g

m L

•

=

p=
pÂ

Taking only first term of loading, we get,

4
cos

g x
g

m L

p
ª

p

  
4

cos  where  and 
g

g kx g k
m L

p¢ ¢= = =
p

Dead load components are,

0, sin cos  and cos cos .X Y g kx z g kx¢ ¢= = f = f
Let w be in the form,

cos cosw Cg kx¢= f
Then from plate equation, we get,

4 2
8 4 2

2 4 2 4 3

1 2 1 1 1 2
cos cos

h w k
w k k g kx

D R RR I x R R R

È ˘Ê ˆ∂ Ê ˆ ¢— + = + + - - - fÍ ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙∂ Î ˚



214 THEORY OF PLATES AND SHELLS

i.e.
42 2 4

2 2 2 2 4

1 h w
w

x R R I x

Ê ˆ∂ ∂ ∂+ +Á ˜∂ ∂f ∂Ë ¯

2 2
4

2 4 4 2

1 2 1 1 2
cos cos

k k
k g kx

D R R R R

È ˘
¢= + + + + fÍ ˙

Î ˚

i.e.

4 2
2 4 4

2 2 2 4

1 1 4 2h k
k k C k

DR R I R R

È ˘ È ˘Ê ˆÍ ˙+ + = + +Í ˙Á ˜Ë ¯Í ˙ Î ˚Î ˚

∴ Multiplying both sides by R8, we get

( ) [ ]
6 442 2 4 4 4 2 21 4 2

hR R
k R k C k R k R

I D

È ˘
+ + = + +Í ˙

Î ˚

∴
( )

4 4 4 2 2

42 2 4 4 2

4 2

1

R k R k R
C

hD k R k R R
I

+ +=
+ +

...eqn. 16.22

In an analysis problem, all terms in RHS of eqn. 16.22 are known. Hence, C is found and hence, w
is found. Substituting the expression of w in eqns. 6 to 16, expressions for all stress resultants and
displacements can be determined. These expressions are given below:

 2
cos cos

EI
M Cg kx

R
f ¢= f

 2 cos cosxM EIk Cg kx¢= f

sin sinx x
EIk

M M Cg kx
Rf f ¢= = - f

  
2

3 cos sinx
k

Q EI k Cg kx
R

Ê ˆ
¢= - + f ◊Á ˜Ë ¯

  
2

3

1
sin cos

k
Q EI Cg kx

RR
f

Ê ˆ
¢= - + fÁ ˜Ë ¯

 ( )1 1 cos cosN R H g kxf ¢= - f

where                    
2

4
1 2 4

2 1
2

k
H EI k C

R R

Ê ˆ
= + + +Á ˜Ë ¯

                 1 sin sinx x
H

N N g kx
kf f ¢= = f

                  
1

2
cos cosx

H
N g kx

k R
¢= f

                     
1
3

cos cos
H

u g kx
Ehk R

¢= f
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                     1 2 sin sin
H H

v g kx
k

¢= - f

where                   2 2 2

1 1
2H

Ehk k R

È ˘= +Í ˙Î ˚

and                     cos cosw Cg kx¢= f ...eqn. 16.23

If for any particular shell if the above values are calculated, it will be found that Mx, Mφ, Mxφ, Qx and
Qφ values are very small (hardly 0.3 percent of final values) and Nx, Nφ, Nxφ values are almost equal to
those obtained from membrane theory. Hence, we replace particular solution by membrane solution.

16.9 HOMOGENEOUS SOLUTION
For this part, the equation is,

4
8

2 4
0

h w
w

R I x

∂— + =
∂

The solution consists of two parts as shown below:

( )cos ( )cos
k

n x n
w f f x

L

p f= f +
f

.

The first part gives the disturbances from the edge and the second part gives the disturbances from
the traverses. As the equation is of the eighth order, there will be eight constants in the first term and
eight in the second term. If the boundary conditions at traverses are assumed as simply supported only
first term may be considered. In that case

( )cos
n x

w f
L

p= f

  cosm n x
He

L
f p=

considering only first term of ‘w’,

cos  where mw He kx k
L

f p
= =

The equation reduces to the form,

4
2 2 4

2 2

1
0

h
k m k

R R I

Ê ˆ- + + =Á ˜Ë ¯

or ( )
642 2 2 4 0.

hR
m k R k

I
- + =
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Substituting  
6

8 4hR
k

I
r =

   

6 6 4
4

2
3

12
,

1
1

12

hR R k
k

hh
= =

¥ ¥

We get, ( )42 2 2 8 0m k R- + r =

or       ( )42 2 2 8m k R- = -r

i.e.      ( ) ( )
42 2 2

2
1 cos 2 sin 2

m k R
n i n

Ê ˆ- = - = p + p + p + pÁ ˜rË ¯

∴          
( )2 2 2

2

2 2
cos sin  where 0, 1, 2, 3, ...

4 4

m k R n n
i n

- p + p p + p= + =
r

  ( )1
1

2
i= ±±

∴                    ( )
2 2

2 2
2

1
1

2

k R
m i

È ˘
= r Í ˙

rÍ ˙Î ˚
± ±

 
2 2 2

2
2 1

2

k R
i

È ˘r= Í ˙
rÍ ˙Î ˚

± ±

[ ]
2

1
2

i
r= g ± ±

where                     
2 2

2
2

k Rg =
r

∴                    [ ]1 2

4
1

2
m i

r= g± ± ±

The eight roots m1, m2, ..., m8 may now be written as,

m1 = α1 + iβ1 m5 = −m1

m2 = α1 − iβ1 m6 = −m2

m3 = α2 + iβ2 m7 = −m3
...(a)

m4 = α2 − iβ2 m8 = −m4
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where

 
( )

1 2
2

1 4

1 1 1

22

È ˘+ g + + + gr Í ˙a = Í ˙Î ˚

( ) ( )
1 2

2

2 4

1 1 1

22

È ˘- g + - - gr Í ˙a = Í ˙Î ˚

( ) ( )
1 2

2

1 4

1 1 1

22

È ˘+ g + - + gr Í ˙b = Í ˙Î ˚

and
( ) ( )

1 2
2

2 4

1 1 1

22

È ˘- g + + - gr Í ˙b = Í ˙Î ˚
...(b)

Thus,  81 2
1 2 8... cosmm mw H e H e H e kxff fÈ ˘= + + +Î ˚ ...(c)

where H1, H2, ..., H8 are arbitrary constants and are to be determined from boundary conditions at edges.
Substituting for m1, m2, ..., m8 in terms of α and β (from eqn. (a)), we get,

( ) ( ) ( ) ( )1 1 1 1 2 2 2 2
1 2 3 4

i i i iw H e H e H e H ea + b f a - b f a + b f a - b fÈ= + + +Î

       ( ) ( ) ( ) ( )3 3 1 1 2 2 2 2
5 6 7 8 cosi i i iH e H e H e H e kx

- a + b f - a - b f - a + b f - a - b f ˘+ + + + ˚

   ( ) ( )1 1
1 1 1 2 1 1cos sin cos sinH e i H e ia f a fÈ= b f + b f + b f - b fÎ

       ( ) ( )2 2
3 2 2 4 2 2cos sin cos sinH e i H e ia f a f+ b f + b f + b f - b f

       ( ) ( )1 2
5 1 1 6 1 1cos sin cos sinH e i H e i-a f -a f+ b f + b f + b f - b f

       ( ) ( )2 2
7 2 2 8 2 2cos sin cos sin cosH e i H e i kx-a f -a f ˘+ b f + b f + b f - b f ˚

   ( ) ( )1 1
1 2 1 1 2 1cos sine H H i H H ea f a fÈ= + b f + - b fÎ

       ( ) ( )2 2
3 4 2 3 4 2cos sine H H i H H ea f a f+ + b f + - b f

       ( ) ( )1 1
5 6 1 5 6 1cos sine H H i H H e-a f -a f+ + b f + - b f

       ( ) ( )2 2
7 8 2 7 8 2cos sin cose H H i H H e kx-a f -a f ˘+ + b f + - b f˚

It is to be noted that the arbitrary constants H1, H2, ..., H8 are complex numbers. Since, w is real, it
follows that (H1 + H2), i (H1 − H2), ..., i (H7 − H8) should be real. It means that H1 and H2, H3 and H4,
H5 and H6, H7 and H8 should be conjugate pairs. Introducing real constants as,

A1 = H1 + H2, A2 = i (H1 − H2), A3 = H3 + H4,        A4 = i (H3 − H4)
A5 = H5 + H6, A6 = i (H5 − H6), A7 = H7 + H1  and  A8 = i (H7 − H6),
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we get,

1 1 2 2
1 1 2 1 3 2 4 2cos sin cos sinw A e A e A e A ea f a f a f a fÈ= b f + b f + b f + b fÎ

      1 1 2 2
5 1 6 1 7 2 8 2cos sin cos sin cosA e A e A e A e kx-a f -a f -a f -a f ˘+ b f + b f + b f + b f˚

Let 1 5 1 5
1 2 and 

2 2

A A A A
C C

+ -
= =

then, A1 = C1 + C2, A5 = C1 − C2

∴ 1 1
1 1 2 1cos cosA e A ea f -a fb f + b f

   ( ) ( )1 1
1 2 1 2 1cosC C e C C ea f -a fÈ ˘= + + - b fÎ ˚

   ( ) ( )1 1 1 1
1 1 2 1cos cosC e e C e ea f -a f a f -a f= + b f + - b f

    = 2C1 cosh α1φ cos β1φ + 2C2 sinh α1φ cos β1φ
Similarly, substituting A3 = C3 + C4, A4 = C3 − C4, A5 = C5 + C6, A6 = C5 − C6, A7 = C7 + C8 and
A8 = C7 − C8,
we get,

w = 2[C1 cosh α1φ cos β1φ + C2 sinh β1φ cos β1φ
+ C3 cosh α1φ sin β1φ + C4 sinh α1φ ⋅ sin β1φ
+ C5 cosh α2φ cos β2φ + C6 sinh β2φ cos β2φ
+ C7 cosh α2φ sin β2φ + C8 sinh α2φ sin β2φ] cos kx ...(16.24)

For symmetric loading, anti-symmetric terms should vanish. Hence, displacement for symmetric
case is,

w = 2[C1 cosh α1φ cos β1φ + C4 sinh α1φ sin β1φ
+ C5 cosh α2φ cos β2φ + C8 sinh α2φ sin β2φ] cos kx

   = 2 (a cos β1φ cosh α1φ − b sin β1φ sinh α1φ
+ c cos β2φ cosh α2φ − d sin β2φ sinh β2φ) cos kx ...(16.25)

where C1 = a, C2 = −b, C3 = c and C4 = −d.

Substituting the value of w in the stress resultant expressions 16.23, all stress resultants can be
expressed in ‘w’. In Table 16.2 and 16.3, they are arranged in the convenient form in which,

F – represent stress resultant/displacement a, b, c and d are arbitrary constants

Vertical reactions

x
x x

M
Q Q

x
M

Q Q
R

f
f f

∂ ¸¢ = + ÔÔ∂
˝∂
Ô¢ = +

∂r Ǫ̂

4 4
1

1 2 2

4 4
1 2

1 2

2 2

2 2

m m

n n

a
= = a ◊

r r
b b

= =
r r
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Table 16.2 Stress resultants and displacements due to complementary function (Even)

F R= [(aB1 − bB2) cosβ1φ cosh α1φ − (aB2 + bB1) sinβ1φ sinh α1φ
+(cB3 − dB4) cosβ2φ cosh α2φ − (cB4 + dB3) sinβ2φ sinh α2φ]

F R B1 B2 B3 B4

Mφ 2

2
cos

EI
kx

R
( )

2

1
2

r
+ g

2

2

r ( )
2

1
2

r
g -

2

2

r

Mx
22 cosEIk kx- 1 0 1 0

Qx

32
sin

EIk
kx-

g 1 1 −1 1

Nφ

4

2

2
2 cos

k
EI kx-

g 0 1 0 −1

Nx

4

3

2
2 cos

k
EIR kx

g −1 1 + γ 1 1 − γ

Qx′
32

sin
EIk

kx-
g γ + 2 2 γ − 2 2

u

3

3

2
2 sin

k
EI kx

hg −1 1 + γ 1 1 − γ

w 2 cos kx 1 0 1 0

Table 16.3 Stress resultants and displacements due to complementary function (Odd)

F R= [(aB1 − bB2) cosβ1φ sinh α1φ − (aB2 + bB1) sinβ1φ cosh α1φ
+(cB3 − dB4) cosβ2φ sinh α2φ − (cB4 + dB3) sinβ2φ cosh α2φ]

F R B1 B2 B3 B4

Qφ
( )

3

3 2

2
cos

EIk
kx

g
m1 – n1 m1 + n1 – m2 – n2 m2 – n2

Qφ′
3

3 2

2
cos

EIk
kx

g
m1 (1–γ) – n1 m1 + n1 (1–γ) – m2 (1+γ) – n2 m2 – n2 (1 + γ)

Nxφ

4

3 2

2
2 sin

k
EIR kx

g
−n1 m1 n2 −m2

Mxφ
2

sin
EIK

kx
R

- α1 β1 α2 β2

v
3

7 2

2
2 cos

k
IR kx

h
-

g
m1 + n1(1−γ) n1 − m1(1−γ) − m2 + n2(1+γ) −n2 − m2(1+γ)

θ cos kx
( )112 RB v

R R

a
- +

( )212 RB v

R R

b
- +

( )322 RB v

R R

a
- +

( )422 RB v

R R

b
- +

Note: In the Table 16.3, θ is the rotation of the tangent.
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Fig. 16.8

Referring to Fig. 16.8,

Due to differential radial displacement, tangent at A will rotate by 
w

R

∂
∂f

Because of circumferential displacement v, at point A, tangent rotates by additional angle v/R,

∴ w v

R R

∂q = +
∂f

...eqn. 16.26

16.10 EDGE CONDITIONS
To determine the arbitrary constants in the expression for displacement w, we have to make use of the
edge conditions. The edge conditions in a shell naturally depend upon the method of supporting the
edges. At each edge φ = φk, one has to look for any four of the moments, forces and displacements at
edges, namely any four of Mφ, Nφ, Qφ′, Nφx, u, v, w and θ. Such conditions for some of the common
support conditions are presented below:

1. Edge Unsupported
In this case, since the shell edge is free, the forces and moments at the edges φ = φk, will be zero. Thus,

Mφ = 0, Nφ = 0, Qφ′ = 0 and Nφx = 0. ...eqn. 16.27

2. Edge Supported on Unyielding Wall
In such case, the wall restricts vertical and horizontal displacement at the shell but allows rotation.
Horizontal and vertical components are found by taking components of v and w. They are

w sin Qk − v cos φk             and w cos φk + v sin φk.
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Hence, the boundary conditions are,

w sin Qk − v cos φk = 0,      w cos φk + v sin φk = 0.

Since, edge rotation is permitted, the other two edge conditions are,

Mφ = 0 and Nxφ = 0. ...eqn. 16.28

3. Edge Rigidly Held (Fixed Edge)
This is not so common case. Since, it is fixed edge conditions, all displacements are zero at the edge.
Thus,

uφk = 0, vφk = 0, wφk = 0, θφk = 0. ...eqn. 16.29

4. Edge Provided with Edge Beam
This is a common case. For outer edge of a multiple shell or the edges of single barrel shell, the
following boundary conditions may be assumed:

(a) θ = 0, i.e. no rotation of shell edge owing to relatively great stiffness of edge beam.

(b) RH = 0, i.e. edge beam is incapable of withstanding lateral thrust. Since, Nφ and Qφ′ are the forces
giving horizontal component of forces,

RH = Nφ cosφk − Qφ′ ⋅ sinφk = 0

(c) The longitudinal displacements of shell and edge beam should be the same.

i.e.  vS = vB.

(d) The vertical displacement of shell and edge beam should be the same.

i.e.  w cosφk  − v sinφk = wB ...eqn. 16.30

For inner edge of a multiple shell, the following boundary conditions may be assumed:
(a) v = 0
(b) Displacement in horizontal direction = 0

i.e. w sinφk + v cosφk = 0.
(c) uS = uB, and
(d) ws = w cos φk − v sin φk = wB. ...16.31

16.11 EDGE BEAM THEORY
The relationship between edge beam forces and displacements with respect to the shell edges forces
should be found so as to apply necessary boundary conditions. Edge beam theory deal with this aspect
of shell analysis.

Shell exerts following forces on the edge beam: Nφ, Nφx, Qφ, Mφ and Mxφ.
Equal and opposite stress resultants develop on edge beam. Let the connection be at the corner of the

edge beam. As a result of these forces from the shell edge beam is subjected to the following forces:
(a) F – longitudinal force,
(b) S – vertical shear and
(c) Mx – bending moment.

Consider the equilibrium of unit length of edge beam as shown in Fig. 16.9.
∑ Forces in x-direction = 0, gives,

1 0x
F

F F N
x f

∂
- + + ¥ - =

∂
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i.e. x
F

N
x f

∂ =
∂

∴   F = ∫Nφx dx

     = ∫[Nφx] sin kx dx

     
1

cosxN kx
k f= - È ˘Î ˚ ...16.32(a)

where [Nφx] sin kx = Nφx.

Similarly for all stress resultants, the magnitude excluding sin kx or cos kx associated with will be
marked as a bracked quantity and edge beam theory derived.
∑ Forces in vertical direction = 0, gives,

cos sin 0k k
S

Q N W
x f f
∂ ¢- f - f + =
∂

where W ′ is weight of edge beam per unit length.

∴ ( )cos sink kS Q N W dxf f ¢= f + f -Ú

  [ ]{ }1
cos sin sink kQ N W kx

k f f ¢= f + f -È ˘ È ˘Î ˚ Î ˚
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∑ Moments in x-direction = 0, gives,

1 cos 1 0x x k
M

N a M S
x f f

∂ + - f - ¥ =
∂

[ ]{ }1 cos sinx x kM N a M S kxf f= - - f -È ˘ È ˘Î ˚ Î ˚Ú

   [ ]{ }1
1

cos cosx x kN a M S kx
k f f= - f -È ˘ È ˘Î ˚ Î ˚

[ ]
1

cos sin1
cos cosk k

x x k
W

N a M Q N kx
k k k kf f f f
Ï ¸¢f f

= - f - - +Ì ˝È ˘ È ˘ È ˘ È ˘Î ˚ Î ˚ Î ˚ Î ˚Ó ˛
Stress at junction,

                1
B

B

u F M
E a

x A I

∂
= -

∂

∴                      1
1

B
B

F M
u a dx

E A I

Ê ˆ= -Á ˜Ë ¯Ú

   
[ ]1

1
1 1

cos cos sin cosx x x k k k
B

NQa W
N N a M kx dx

E Ak I k k k k

ff
f f f

È ˘Ï ¸È ˘ ¢Î ˚Í ˙Ì ˝= - - - f - f - f +È ˘ È ˘ È ˘Î ˚ Î ˚ Î ˚Ô ÔÍ ˙Ó ˛Î ˚
Ú

[ ]1
12 2

1
cos cos sin sinx x x k k k

B

Q Na W
N N a M kx

k k kAEk I k

f f
f f f

È ˘Ï ¸È ˘ È ˘ ¢È ˘ Î ˚ Î ˚Í ˙Ì ˝= - - - f - f - f +È ˘ È ˘ È ˘Í ˙Î ˚ Î ˚ Î ˚Ô ÔÍ ˙Ó ˛Î ˚Î ˚
Vertical deflection of edge beam is given by,

2

2
B

B
w

EI M
x

∂
=

∂

[ ]
1

1
cos cos sin cos .x x k k k

Q N W
N a M kx

k k k k

f f
f f

Ï ¸È ˘ È ˘ ¢Î ˚ Î ˚Ì ˝= + f - f - f +È ˘ È ˘Î ˚ Î ˚Ô ÔÓ ˛

∴          
[ ]

13

1
cos cos sin cosB x x k k k

B

NQ W
w N a M kx

k k kI k

ff
f f

Ï ¸È ˘ ¢Î ˚Ì ˝= - + f - f - f +È ˘ È ˘Î ˚ Î ˚Ô ÔÓ ˛

16.12 SUMMARY OF CALCULATIONS
1. Select the overall dimensions of the shell using I.S. Recommendations. Calculate k = π/L.
2. Find membrane or particular solution.
3. Calculate:

(a)

1 8 1 86 4 6 4

2

12hR k R k

I h

Ê ˆ Ê ˆ
r = =Á ˜ Á ˜Ë ¯ Ë ¯
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(b)
2 2

2
2

k Rg =
r

(c) Find

( )
1 2

2

1 4

1 1 1

22

È ˘+ g + + + gr Í ˙a = Í ˙Î ˚

( ) ( )
1 2

2

2 4

1 1 1

22

È ˘- g + - - gr Í ˙a = Í ˙Î ˚

( ) ( )
1 2

2

1 4

1 1 1

22

È ˘+ g + - + gr Í ˙b = Í ˙Î ˚

and
( ) ( )

1 2
2

2 4

1 1 1

22

È ˘- g + - - gr Í ˙b = Í ˙Î ˚

(d) Find
4

1 1
2

m = a
r

4

2 2
2

m = a
r

4

1 1
2

n = b
r

4

2 2
2

n = b
r

(e) Select the boundary conditions at the edge φ = φk. Each equation can be formed by collecting
coefficients of a, b, c and d and writing the right hand side of equation.

(f) Solve simultaneous equations to get arbitrary constants a, b, c and d.

(g) Using Table 16.2 and 16.3 find the stress resultants.
Since, the calculations are lengthy bending analysis is not meant for hand calculation. It is suggested

that going through above steps one should develop analysis package and use it.

16.13 STATICAL CHECKS
For confirming the validity of the results obtained, the following statical checks should be applied.

1. Sum of the horizontal forces in x-direction should be zero.
To apply this check, Nx should be found at mid point of various equal segments (say 5° or 10°).
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Fig. 16.10 Shell arch divided into 8 equal segments

Let these values be
1 2
, ,...,

Lx x xN N N as shown in Fig. 16.10. Apply Simpson’s rule to sum up

there forces. Thus

1 2 3 4
4 2 4 ...

3 Lx x x x x x

R
N N N N N N

fdÂ = + + + +È ˘Î ˚

where δφ is the angular length of the segment and NxL is the last ordinate. Then the statical check

is, if F is the sum of longitudinal forces in edge beams, then error 100x

x

N F

N

Â -
= ¥

Â
.

This error should be within the limit.

2. Sum of vertical components of Nxφ along the rim of end frame (i.e. at x = L/2) should be equal
to half the total vertical load on the shell.
Now, vertical component of Nxφ

      = Nxφ sin φk

For finding the total vertical component due to Nxφ at x = L/2, find the values at mid point of
various equal segments of length Rδφ. Then from Simpson’s rule

sin 2 .
2x x
L

N R gfÂ f = ¥ f ¥ ¥

One can make use of symmetry and consider only half the shell arch.
3. Check for Longitudinal Moments

About any horizontal axis y − y, in the cross section, sum of all moments must be equal to statical
moment. This is applied at mid span (x = 0).
Referring to Fig. 16.10, various internal moments are
(a) Moment Mx in the shell.

 
1 3 42

1
4 2 4 ...

3 Lx x x x x xM R M M M M MÂ = df + + + + +È ˘Î ˚

(b) Moment due to Nx forces

           
1 2 3 41 2 3 44 2 4 ...

3 x x x x L xL

R
y N y N y N y N y N

fd= + + + + +È ˘Î ˚
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where y1, y2 ... are the lever arms of Nx forces in the middle of segments.

( )cos cos 2kR h= f - f +

(c) Edge Beam Moment = 2M1

(d) Statical moment is due to sinusoidal loading on the shell and that on the edge beam:
At mid span.

           ( )
2 2

2 2
2 k

L L
R g w

È ˘
¢ ¢= ¥ f +Í ˙

p pÎ ˚

The error is,
( ) ( ) ( ) ( )

( )
Sum of moments , , moment

.
moment

a b c d

d

-
 It should be within the acceptable limit.

16.14 LONG AND SHORT SHELLS
In the previous discussion it has been said that beam theory and Schorer theory are applicable only for
long shells. D.K.J. theory is applicable for long as well as short cylindrical shells. However, the terms
long and short shells have no precise meaning. It is difficult to exactly demarcate between them. Several
criteria have been proposed from time to time by different authors. Some of them are presented in this
article.

1. Basis of Applicability of Beam Theory
Beam theory is the simple method for the analysis of cylindrical shell. It is hoped on the assumption that
along the depth of beam stress variation is linear. After studying the stress distribution across the depth
by more precise theories it has been suggested that beam theory is applicable if,

(i) L/R ≥ 5 for shells without edge beams
(ii) L/R ≥ 3 for shells with edge beams

Hence a shell is called long shell if L/R ≥ 5, if it is without edge beam and if L/R ≥ 3, if it is with edge
beam.

2. Basis of Ignoring Mx, Qx, Mxy

There are theories like Schorer theory in which the terms Mx, Qx and Mxy in a shell element are taken
as zero. Such theories are applicable only if, L/R ≥ π. Hence, on the basis of ignoring Mx, Mxy, Qx shells
may be called as long shell if L/R ≥ π.

3. Extent of Travel of Edge Disturbances
Disturbance emanating from the edges of shell may or may not penetrate beyond the crown. In long
shells they do not penetrate crown i.e. actual forces at crown are the membrane forces only. On this
basis ASCE classifies shell as long if L/R > 16.

4. Aas Jacobsen’s Classification
Aas Jacobsen was perhaps the first to classify shells into long, intermediate and short. According to
him,

the shell is long, if ρ = 4 to 7
intermediate, if ρ = 7 to 10

short, if ρ = 10 to 20.
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QUESTIONS

1. Draw a typical cylindrical shell element and indicate various membrane forces, transverse shears and moments.
Give the relations among forces and moments on positive faces and negative faces.

2. Derive the six equations of equilibrium of a shell element subject to bending.
3. Enumerate the basic assumptions  made in the analysis of cylindrical shells in the following theories:

(i) D. K. J. theory
(ii) Schorer’s theory.
Comment on the above two theories.

4. Discuss edge conditions to be used in the following cases of cylindrical shell analysis:
(i) Edge unsupported

(ii) Edge supported on unyielding wall
(iii) Fixed edge
(iv) Inner edge of multiple shell.
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Analysis of Symmetrically
Loaded Cylindrical

Water Tanks and Pipes

Circular pipes and water tanks are usually subjected to symmetrical load and they are commonly used
structure. In this chapter, the analysis of these structures is presented.

17.1 FORCES ON AN ELEMENT
Figure 17.1 shows a typical cylindrical pipe/water tank and Figure 17.2 shows an element in which

x – longitudinal direction

y or φ – tangential direction and

z – radial inward direction.

h

R

Fig. 17.1 A Cylindrical Pipe/Water tank

Chapter

17
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Fig. 17.2 Typical element

Due to symmetry,
(i) Shearing forces and twisting moments are zero i.e.

Nxφ = Nφx = 0
Qφ = 0
Mxφ = Mφx = 0.

(ii) There is no variation of forces and moments with respect to φ, i.e.

 Nφ – Constant

Mφ – Constant.

Thus, there is variation of forces with respect to x only i.e.

x
x x

N
N N dx

x
+ ∂
= +

∂

 andx
x x

Q
Q Q dx

x
+ ∂
= +

∂

.x
x x

M
M M dx

x
+ ∂
= +

∂
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17.2 EQUATIONS OF EQUILIBRIUM
Let X and Z be component of load in x and z direction respectively.

(i) ∑ Forces in x-direction = 0, gives

0x
x x

N
N dx R d N Rd XdxRd

x

∂Ê ˆ+ f - f + f =Á ˜Ë ¯∂

i.e. 0.xN
X

x

∂
+ =

∂ ...eqn. 17.1

(ii) ∑ Forces in z-direction = 0, gives

sin sin 0.
2 2

x
x x

Q d d
Q dx Rd Q Rd N dx N dx Zdx Rd

x f f
∂ f fÊ ˆ

+ f - f + + + f =Á ˜Ë ¯∂

Since, φ is a small angle sin
2 2

d df f= and hence, the equilibrium equation reduces to

0xQ
dx Rd N dx d Z R dxd

x f
∂

f + f + f =
∂

i.e. 0x
NQ

Z
x R

f∂
+ + =

∂
...eqn. 17.2

(iii) ∑ Moments in x-direction = 0, gives

0
2 2

x x
x x x x

M Qdx dx
M dx Rd M Rd Q Rd Q dx Rd

x x

∂ ∂Ê ˆ Ê ˆ+ f - f - f - + f ◊ =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂
After neglecting small quantity of higher order,

0x
x

M
Rdxd Q Rd dx

x

∂
f - f =

∂

i.e. 0x
x

M
Q

x

∂
- =

∂
...eqn. 17.3

17.3 STRESS RESULTANTS
First equation gives Nx value directly and Nx term is not appearing in any of the subsequent equations.
Hence, Nx can be determined independently. Due to other load components Nx is not at all affected.

Now consider the equations 2 and 3. There are three unknowns namely, Qx, Nφ and Mx. As the
number of unknowns are more than number of equations, compatibility of displacements should be
considered.

Let u, v and w be the displacement components in x, y and z-directions respectively. Due to symmetry
v is zero. Thus, only u and w exist.

Figure 17.3 shows the deformed position of the middle surface.

Now,
x

u

x

∂e =
∂

...eqn. 17.4
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Middle surface

w

R

Fig. 17.3 Deformed position of middle surface

Final length in  direction Original length

Original lengthf
f -e =

    
( )R w d Rd w

R d R

- f - f
= = -

f ...eqn. 17.5

, andx
x E E

fmss
e = -

x

E E
f

f
sms

e = - +

∴               
2

x x
x E Ef

s m s
e + me = -

∴ ( )21
x x

E
fs = e + me

- m

∴                       ( )2
,  where  is the thickness.

1
x x x

Eh
N h hf= s = e + me

- m

Similarly, ( )21
x

Eh
Nf f= e + me

- m

Thus, ( )21
x x

Eh
N f= e + me

- m ...eqn. 17.6(a)
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and ( )21
x

Eh
Nf f= e + me

- m
...eqn. 17.6(b)

For the loading Y and Z only, Nx = 0.

∴  x fe = -me ...eqn. 17.7

Substituting eqn. 7 in eqn. 17.6(b), we get,

( )2
21

Eh
Nf f f= e - m e

- m

     Eh f= e

∴ Ehw
N

Rf = - ...eqn. 17.8

Due to symmetry, there is no change in curvature in the circumferential direction. The curvature in

x-direction is equal to 
2

2
.

w

x

∂-
∂

∴
2

2
 andx

w
M D

x

∂
= -

∂
...eqn. 17.9(a)

2

2

w
M D

x
f

∂= - m
∂

     xM= m ...eqn. 17.9(b)

where   ( )
3

212 1

Eh
D =

- m

From equation of equilibrium 17.3,

2

3
x

x

M w
Q D

x x

∂ ∂= = -
∂ ∂

From equation 17.2,

4

4

1
0.

w Ehw
D Z

R Rx

∂- - ¥ + =
∂

∴
4

4 2
0

w Eh Z
w

Dx R D

∂- - + =
∂

i.e.
4

4 2

w Eh Z
w

Dx R D

∂ + =
∂

i.e.
4

4
4

4
w Z

w
Dx

∂ + b =
∂

...eqn. 17.10
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where
4

2
4

Eh

R D
b =

i.e.   

( )

( )2
4

2 3 2 2
2

2

3 1

4
4

12 1

Eh Eh

R D Eh R h
R

- m
b = = =

- m

Equation 17.10 is to be solved to get particular integral and complementary solution. Particular
integral depends upon the nature of loading and complementary solution depends upon the boundary
conditions. Thus, the total solution

 w = W1 + W2

where w1 — particular integral

and w2 — complementary solution

Complementary solution is given by

4
42

24
4 0

w
w

x

∂
+ b =

∂

( )4 4
24 0w∂ + b =

∴ ( ) ( )4 4 44 4 cos 2 sin 2n i nÈ ˘d = - b = b p + p + p + pÎ ˚

∴  
2 2

2 cos sin
4 4

n n
i

p + p p + pÈ ˘d = b +Í ˙Î ˚
where n = 0, 1, 2 and 3.

i.e. [ ]1
1 1

2 1
2 2

i i
È ˘d = b + = b +Í ˙Î ˚

[ ]2
1 1

2 1
2 2

i i
È ˘d = b - + = b - +Í ˙Î ˚

[ ]3
1 1

2 1
2 2

i i
È ˘d = b - - = b - -Í ˙Î ˚

[ ]4
1 1

2 1
2 2

i i
È ˘d = b - = b -Í ˙Î ˚

∴ ( ) ( ) ( ) ( )1 1 1 1
2 1 2 3 4

i x i x i x i xw C e C e C e C e+ b - b - - b - + b¢ ¢= + + +

    [ ] [ ]1 2cos sin cos sinx xC e x i x C e x i xb b¢ ¢= b + b + b - b

      [ ] [ ]3 4cos sin cos sinx xC e x i x C e x i x-b -b¢ ¢+ b - b + b + b



234 THEORY OF PLATES AND SHELLS

( ) ( )1 2 1 2cos sinx xe C C x e C C i xb b¢ ¢ ¢= + b + - b

   ( ) ( )3 4 4 3cos sinx xe C C x e C C i x-b -b¢ ¢+ + b + - b

It is to be noted that C1′, C2′, C3′ and C4′ are complex numbers. Since, w is real, it follows that
C1′ + C2′, i(C1′ − C2′), C3′ + C4′ and i(C3′ − C4′) should be real. It means C1 and C2 are conjugate terms and
C3 and C4 are also conjugate. Hence, let

 C1 = C1′ + C2′, C2 = i(C1′ − C2′), C3 = (C3′ + C4′)
and  C4 = i(C3′ − C4′), where C1, C2, C3 and C4 are real terms.

∴ 2 1 2 3 4cos sin cos sinx x x xw C e x C e x C e x C e xb b -b -b= b + b + b + b

     ( ) ( )1 2 3 4cos sin cos sinx xe C x C x e C x C xb -b= b + b + b + b ...eqn. 17.11

Example 17.1. Analyse a water tank of radius R and depth ‘d’, if its one edge is fixed at base slab and
top is free. Assume the thickness of wall uniform.

Solution. Figure 17.4 shows a typical water tank. Let the coordinates be selected as shown in the figure.

2R

d

z

x

Fig. 17.4 A Typical water tank

In this case at x, the load component is

( )Z d x= -g -
where γ—unit weight of water.

∴
( )4

4
4

4
d w d x

w
Ddx

g -+ b = -

Particular Solution:

( ) ( )4 4
14

d x
w

D

-g -d + b =



ANALYSIS OF SYMMETRICALLY LOADED CYLINDRICAL WATER TANKS AND PIPES 235

( )4
4

14
4 1

4

d x
w

D

Ê ˆd g -b + = -Á ˜bË ¯

( ) 14

1 4 4
1

4 4

d x
w

D

-Ê ˆ-g - d= +Á ˜b bË ¯

( ) 4

4 4

1
1 ...

24 4

d x

D

È ˘g - d= - + -Í ˙
b bÍ ˙Î ˚

( )
44

d x

D

g -= -
b

( )

2

d x
Eh

D
R D

g -= -

∴ ( )
2

1
R

w d x
Eh

= -g - ...eqn. 17.12

The same result is obtained if we consider membrane solution, as shown below:
Z = −γ(d − x)

Referring to Fig. 17.5

A� B�

A
B

Z

Deformed
surface

Original
surface

Fig. 17.5 Cross section of a water tank

      Hoop stress = ( ) R
d x

h
g -

∴            Circumferential strain =
( )d x R

Eh

g -
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i.e.
( )A B AB d x R

AB Eh

¢ ¢ - -= g

i.e.              
( ) ( )R w d Rd d x R

Rd Eh

- f - f -= g
f

i.e.         
( )w d x R

R Eh

g -- =

or            
( ) 2d x R

w
Eh

-g -=

Thus, the particular solution and the membrane solutions are the same. Thus, here also particular
solution can replace membrane solution. The complementary solution which depends on boundary
conditions may be looked as edge perturbations from boundaries.

Total solution,
w = w1 + w2

    = eβx(C1 cos βx + C2 sin βx) + e−βx(C3 cos βx + C4 sin βx)
( ) 2d x R

Eh

g -- ...eqn. 17.13

In any stable structure disturbances at one end must go on reducing at the other end. w can go on
reducing with increase in x if and only if C1 and C2 are zero.

Hence,

( ) ( ) 2

3 4cos sinx d x R
w e C x C x

Eh
-b g -= b + b -

C3 and C4 are to be determined from the boundary conditions. In this case, the boundary conditions
available are,

                 0 0xw = = ...(1)

              
0

0
x

w

x =

∂
=

∂ ...(2)

From B.C. (i), we get,

                     
2

30
dR

C
Eh

g= -

or                    
2

3 .
dR

C
Eh

g=

From B.C. (ii), we get,

( ) ( )
2

3 4 3 4
0

cos sin sin cos 0.x x

x

R
e C x C x e C x C x

Eh
-b -b

=

g-b b + b + - b b + b b + =

i.e.
2

3 4 0
h

C C
Eh

g-b + b + =
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or,
2 2 2

4 3
R dR R

C C
Eh Eh Eh

g g g= - = -
b b

     
2 1R

d
Eh

g Ê ˆ= -Á ˜bË ¯

∴
2 1

cos sinxR
w d x e d x d x

Eh
-bÈ ˘Ï ¸g Ê ˆ= - - - b + - bÍ ˙Ì ˝Á ˜bË ¯Ô ÔÍ ˙Ó ˛Î ˚

...eqn. 17.14

∴                 
1

cos sinxEhw
N R d x e d x d x

R
-b

f
È ˘Ï ¸Ê ˆ= - = g - - b + - bÍ ˙Ì ˝Á ˜bË ¯Ô ÔÍ ˙Ó ˛Î ˚

...eqn. 17.15

Now,            ( )
2

3 4 3 4cos sin sin cosxw R
e C x C x C x C x

x Eh
-b∂ g

= b - b - b - b + b +
∂

∴                 ( )
2

2
3 4 3 4 32

cos sin sin cos sinxw
e C x C x C x C x C x

x
-b∂ È= b b + b + b - b + bÎ∂

4 3 4cos cos sinC x C x C x- b - b - b ˘̊

    ( )2
3 42 sin cosxe C x C x-b= b b - b

    

2
2 1

2 sin cosx R
e d x d x

Eh
-b È ˘g Ê ˆ= b b - - bÍ ˙Á ˜bË ¯Î ˚

From eqn. 17.9(a),

2

2x
w

M D
x

∂= -
∂

∴
2

2 1
2 sin cosx

x
R

M De d x d x
Eh

-b È ˘g Ê ˆ= - b b - - bÍ ˙Á ˜bË ¯Î ˚
...eqn. 17.16

Convergence Study
Table 17.1 shows the values of βx, e−βx sinβx and e−βx cosβx. Figure 17.6 shows the variation of the
functions e−βx sinβx and e−βxcosβx with respect to e−βx. It may be observed that the two functions are
converging fast. Hence, deflection and all stress resultants are converging fast. For example, for a water
tank with R = 5 m, d = 4.5 m, h = 150 mm, if µ is taken zero,

( )
( )

2
4

2 2 22

3 1 3
5.333

5 0.15R h

- m
b = = =

∴   β = 1.52
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Table 17.1 Convergence study of the functions

βx e−βx sinβx e−βx cosβx

0 0 1.0

1 0.3096 0.1988

2 0.1231 −0.0563

3 0.0071 −0.0493

4 −0.0139 −0.0120

5 −0.0065 0.0019

6 −0.0007 0.0024

7 0.0006 0.0007

0.30%

0 1 2 3 4 5 6 7e
si

n
x

�
�

x
�

( ) Convergence of the functiona e sin x
��x

�

�x

1.0

e
co

s
x

�
�
x

�

0 1 2 3 4 5 6 7

�x

( ) Convergence of the functionb e cos x
��x

�

Fig. 17.6 Convergence of the functions

At x = 0, at edge fixed with slab,
e−βx = 1, sinβx = 0, cosβx = 1

∴
2 2

0
2 1R

M D d
Eh

È ˘- b g Ê ˆ= - -Í ˙Á ˜bË ¯Î ˚

     ( ) ( )
3

2 2

2

1
2

12 1

Eh
R d

Eh
= b g ¥ - b

- m

     ( )
2

2 22
12

h
R d= b g - b



ANALYSIS OF SYMMETRICALLY LOADED CYLINDRICAL WATER TANKS AND PIPES 239

Substituting β = 1.52, γ = 9.8 kN/m3 and the other values we get,

                 
( )2

2 2
0

0.15 1
2 1.52 9.8 5.0 4.5

12 1.52
M

Ê ˆ= ¥ ¥ ¥ -Á ˜Ë ¯

= 8.156 kN-m
At the free edge x = 4.5 m, since

( )
3 21

12 1 0 12

D Eh h

Eh Eh
= ¥ =

-

∴
( )22 2 1.52 4.5

0
0.15

2 1.52 9.8 5
12

M e- ¥= ¥ ¥ ¥ ¥ ¥

       
1

4.5sin 4.5 1.52 4.5 cos 4.5 1.52
1.52

È ˘Ê ˆ¥ - - ¥Á ˜Í ˙Ë ¯Î ˚
      = 0.002 kN-m ≈ 0.

∴ The boundary condition at top edge do not influence moment at fixed edge.

At    1.5 m, 1.5 1.52 2.28
3

d
x x= = \b = ¥ =

2
2 2 2.280.15 1

2 1.52 9.8 5 4.5sin 2.28 4.5 cos2.28
12 1.52xM e-

È ˘Ê ˆ= ¥ ¥ ¥ ¥ - -Á ˜Í ˙Ë ¯Î ˚
      = 1.284 kN-m

It may be noted that in R.C.C. water tank design, it is assumed that in top 2/3 depth vertical rein-
forcement may be only nominal reinforcement. The assumption is justified. In the design it is also
assumed that the moment at base is due to the pressure shown in Fig. 17.7.

d

d/3

�d

Fig. 17.7 Approximate estimation of moment Mx

i.e. 0
1 1

2 3 3 3

d d
M d

Ê ˆ= ¥ g ¥ ¥ ¥Á ˜Ë ¯

3

54

dg=
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Hence, in this case approximated moment is

3

0
9.8 4.5

16.538 kN-m.
54

M
¥

= =

This is almost double of actual value of 8.156 kN-m. Thus, in the approximate method moment is
overestimated.

17.4 ANALYSIS OF LONG CIRCULAR PIPES
In the analysis of shells, particular solution can be replaced by membrane solution and complementary
solution can be considered as edge perturbations. Hence, the two solutions can be found separately and
superposed to get total solution. The perturbation at the edges is due to edge moment M0 and edge
transverse shear Q0. Due to antisymmetry M0 and Q0 are uniformly distributed along the edges. The
deflection function w due to M0 and Q0 may be found as explained below (Ref. Fig. 17.8).

Q0

Q0

M0

M0

x

Fig. 17.8 Pipe subjected to uniform M0 and Q0

Since, the forces applied at the end x = 0 produce a local bending which dies out rapidly with x from
the loaded end, we conclude that C1 and C2 in the general solution must vanish.

i.e. C1 = C2 = 0

∴  w = e−βx(C3 cos βx + C4 sinβx)

The boundary conditions to be satisfied are:

2

020
0

x x
x

w
M D M

x=
=

Ê ˆ∂= - =Á ˜Ë ¯∂
...(i)

and  
3

030
0 0

x
x x

x x

M w
Q D Q

x x=
= =

Ê ˆ∂ ∂= = - =Á ˜Ë ¯∂ ∂
...(ii)

Now,      ( )3 4 3 4cos sin sin cosxw
e C x C x C x C x

x
-b∂

= b - b - b - b + b
∂
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(
2

2
3 4 3 42

cos sin sin cosxw
e C x C x C x C x

x
-b∂

= b b + b + b - b
∂

           )3 4 3 4sin cos cos sinC x C x C x C x+ b - b - b - b

       ( )2
3 42 sin cosxe C x C x-b= b b - b

∴ ( )
3

3
3 4 3 43

2 sin cos cos sinxw
e C x C x C x C x

x
-b∂

= b - b + b + b + b
∂

From B.C. (i), we get,

( )2 0
4 0 4 2

2  or  
2

M
D C M C

D
- b - = =

b
From B.C. (ii), we get,

      ( )3
4 3 02D C C Qb + =

i.e.                 
0

3 4 32

Q
C C

D
+ = -

b

i.e.
0 0

3 3 22 2

Q M
C

D D
= - -

b b

or ( )3 0 03

1

2
C Q M

D
= - + b

b

∴  ( )0 03
sin cos cos

2

xe
w M x x Q x

D

-b
È ˘= b b - b - bÎ ˚b ...eqn. 17.17

The maximum deflection occurs at x = 0.

                  max 0 0 03

1

2
w w M Q

D
= = - b +È ˘Î ˚b ...eqn. 17.18

The negative sign for this deflection is due to the fact that w is taken as positive towards the axis of
the cylinder. The slope at x = 0 is given by

               ( )3 4
0x

w
C C

x =

∂
= b - +

∂

  ( ) 0
0 0 3 2

1

2 2

M
Q M

D D

È ˘= b + b +Í ˙b bÎ ˚

  0 02

1
2

2
Q M

D
= + bÈ ˘Î ˚b

...eqn. 17.19
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17.5 ANALYSIS OF WATER TANKS AS COMBINATION OF MEMBRANE
SOLUTION AND EDGE PERTURBATIONS M0, Q0

The water tank may be analysed as the combination of the following two cases:
(i) Membrane analysis (Free edge at bottom also) and

(ii) Free edge subject to M0 and Q0 at bottom with the conditions that

0 at 0
 for fixed base

and 0 at 0

w x
w

x
x

= = Ô̧∂ ˝= = Ô∂ ˛

0 at 0
 for hinged base.

and 0 at 0x

w x
M x

= = ¸
˝= = ˛

Analysis of Water Tank with Fixed Base:
Membrane displacement is given by

( )
1 44

d x
w

D

-g -=
b

and ( )2 0 03

1
sin cos cos

2
w M x x Q x

D
È ˘= - b b - b - bÎ ˚b

∴                  ( )2 0 030

1

2x
w M Q

D=
= - b +

b

∴               ( )2
0 02

0

1
2

2x

w
M Q

x D=

∂
= b +

∂ b
Now, boundary conditions are at x = 0,

0 ...(1) and  0 ...(2)
w

w
x

∂= =
∂

Noting that w = w1 + w2, from boundary condition (i), we get

( )0 04 3

1
0.

4 2

d
M Q

D D

g- - b + =
b b

or ( )0 0 2

d
M Q

-gb + =
b

...(iii)

From boundary condition (ii), we get,

( )0 04 2

1
2 0

4 2
M Q

D D

g + b + =
b b

i.e. 0 0 2
2

2
M Q

gb + = -
b

...(iv)
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From equation (iii) and (iv), we get,

0 22 2

d
M

g g
b = -

b b

or 0 2

1

2
M d

g Ê ˆ= -Á ˜bË ¯b ...(v)

From equation (iii),

0 02

d
Q M

g= - -b
b

    
1

2 2

d
d

g g Ê ˆ= - - -Á ˜b b bË ¯

    
1

2
d

g È ˘= - +Í ˙b bÎ ˚

∴
( ) ( )4 3 2

1
sin cos cos

2 24 2 2

xd x e d
w x x d x

D D

-b È ˘g - g g gÊ ˆ Ê ˆ= - + - b - b - - + bÍ ˙Á ˜Á ˜b b bË ¯b b bË ¯Í ˙Î ˚

  
( )

4 3 2
sin cos sin

2 24 2 2

xd x e d d
x x x

D D

-bg - g g gÈ ˘= - + b + b - bÍ ˙b bb b bÎ ˚

  
( )

4 4
sin cos sin

4 2

xd x e
d x d x x

D D

-bg - gÈ ˘= - + g b + g b - bÍ ˙bb b Î ˚

  4

1
sin cos

4
xd x e d x d x

D
-bÈ ˘Ï ¸g Ê ˆ= - - - - b + bÍ ˙Ì ˝Á ˜bË ¯b Ô ÔÍ ˙Ó ˛Î ˚

...eqn. 17.20

This is same as eqn. 17.14 obtained from first principle.
(b) Tank with Hinged Base:
The total solution is,

( ) ( )0 04 3
sin cos cos

4 2

xd x e
w M x x Q x

D D

-bg - È ˘= - + b b - b - bÎ ˚b b
The boundary conditions are at x = 0,

w = 0   and   M0 = 0.

∴ we get 04 3

1
0 0

4 2

d
Q

D D

g= - + - =È ˘Î ˚b b
.

∴ 0 2

d
Q

g= -
b
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∴
( ) ( )04 3

cos
4 2

xd x e
w Q x

D D

-bg -= - + - b
b b

( )
4 3

cos
24 2

xd x e d
x

D D

-bg - gÊ ˆ= - - - bÁ ˜bË ¯b b

( )
4 4

cos
4 4

xd x d
e x

D D
-bg - g= - + b

b b

4
cos

4
xd x de x

D
-bg È ˘= - - - bÎ ˚b

2

cosxR
d x de x

Eh
-bg È ˘= - - - bÎ ˚ ...eqn. 17.21

The same result may be obtained from the first principle also.

QUESTIONS

1. Derive the equations of equilibrium for a symmetrically loaded cylindrical pipes.
2. The equation of equilibrium for a symmetrically loaded pipe is

4
4

4
4

w Z
w

Dx

∂ + b =
∂

where                            
4

2
4 .

Eh

R D
b =

Determine the complementary function for it.
3. Show that the particular solution in the equilibrium equation of symmetrically loaded pipe may be replaced by

membrane solution.
4. A long cylindrical pipe is subjected to edge moment M0 and edge shear Q0 per unit circumferential length.

Determine the expression for displacement.
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Membrane Theory for
Shells of Revolutions

Middle surface of a shell of revolution is obtained by rotating a plane curve around an axis, which is
denoted as shell axis. In this chapter, analysis of such shells by membrane theory is presented.

18.1 GEOMETRY OF SHELL OF REVOLUTION
Figure 18.1 shows a typical shell of revolution. By bisecting the middle surface of the shell with two
series of plane, one containing the axis and another perpendicular to the axis, we create a net of lines.
These network of curves may be called as meridians and parallels.

M
er

id
ian

ABCD - shell element

S
he

ll
ax

is

A

B

C
Parallel circle

r2

90�

r1

r0

�

d�

�d�

D

Fig. 18.1

Let,

r1 — radius of curvature of the meridian.
r2 — length of the shell normal to meridian at point A upto the shell axis.
r0 — radius of curvature of parallel circle.

Chapter

18
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φ — the angle between the shell axis and shell normal.
θ — the angle in the plane of parallel circle between a reference direction and the radius joining.

It may be noted that the angle between the shell axis and the radius of the parallel circle r0 is 90°.
∴ r0 = r2 sin φ ...eqn. 18.1

18.2 EQUATIONS OF EQUILIBRIUM
Consider an element formed by two meridians and two parallels as shown in Fig. 18.2.

N
�

N
��

N
� d�

90�
r0

�

x
y z

N
��

+

N
�

+

N
��

+ N
�

+ r2

r1
�

d�

N
��

Fig. 18.2

Let Nθ, Nφ, Nθφ and Nφθ be the forces per unit length. Then obviously,

N
N N d+ q
q q

∂
= + q

∂q

N
N N d

f+
f f

∂
= + f

∂f
...eqn. 18.2

 and
N

N N d
qf+

qf qf
∂

= + q
∂q

N
N N d

fq+
fq fq

∂
= + f

∂f
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Let,

X — Component of load in θ-direction per unit area.
Y — Component of load in φ-direction per unit area.
Z — Component of load in direction normal to the element in the inward direction, per unit area.

Noting that in membrane theory bending moment and transverse shear are neglected, the element is
in equilibrium under the action of Nθ, Nφ, Nθφ and Nφθ.

Three equations of equilibrium may be derived for the element by considering the forces in three
mutually perpendicular directions θ, φ and Z.

1.  Equilibrium of forces in θθθθθ direction
Component of various forces in θ-direction are:

(a) Nθ forces:

1 1
N

N r d N d r dq
q q

∂Ê ˆ- f + + q fÁ ˜Ë ¯∂q

1
N

r dq∂
= ◊ q

∂q
.

(b) Nφ forces – No component.
(c) Nφθ forces:

0
0 0

N r
N r d N d r d d

fq
fq fq

∂Ê ˆ ∂Ê ˆ- q + + f + f qÁ ˜ Á ˜∂f ∂fË ¯ Ë ¯

0
0

Nr
N d d r d d

fq
fq

∂∂
= f q + f q

∂f ∂f

( )0r N d dfq
∂= f q
∂f

[Small quantity of higher order neglected].
(d) Nθφ forces:

N
��

r  d1 �

N
��

r d cos1 � �
�

�

(  ) Vertical sectiona

N ��
r d

cos

1
�

� d /2�

d
/2

�

Resultant

(  ) Plan viewb

+
N �

�
r

d
co

s
1

�

�

Fig. 18.3
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Referring to Fig. 18.3,
On face AB of the element, upward force

= Nθφ r1 dφ [Ref. Fig. 18.3(a)]
Its radial inward component

= Nθφ r1 dφ cosφ [Ref. Fig. 18.3(b)]
Similarly on face CD, downward force

1

N
N d r d

qf
qf

∂Ê ˆ
= + q fÁ ˜Ë ¯∂q

Its radial inward component,

1 cos
N

N d r d
qf

qf
∂Ê ˆ

= + q f fÁ ˜Ë ¯∂q [Ref. Fig. 18.3(b)]

Hence, the component of these Nθφ forces in ‘θ’ direction

1 1cos cos
2 2

N d d
N d r d N r d

qf
qf qf

∂Ê ˆ q q= + q f f ◊ + f f ◊Á ˜Ë ¯∂q

1 cosN r d dqf= f f q

[After neglecting small quantities of higher order].
(e) Load Component.

= X r1dφ r0 dθ
= X r0r1 dθdφ

∴ The equation of equilibrium is,

( )1 0 1 0 1cos 0
N

r d d r N d d N r d d Xr r d dq
qf qf

∂ ∂
q f + q f + f q f + q f =

∂q ∂f

i.e.           ( )1 1 0 1 0cos 0
N

r N r N r Xr rq
qf qf

∂ ∂
+ f + + =

∂q ∂f
...eqn. 18.3

2. Equation of Equilibrium of forces in φφφφφ direction.
(a) Component of Nφ forces in φ direction:

0
0 0

N r
N r d N d r d d

f
f f

∂Ê ˆ ∂Ê ˆ- q + + f + f qÁ ˜ Á ˜∂f ∂fË ¯ Ë ¯

0
0

r
N d d r N d df f

∂
= f q + f q

∂f

( )0r N d df
∂= f q
∂f

[Small quantity of higher order neglected].
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(b) Component of Nθ forces:
Looking at Fig. 18.4(a), tangential outward forces in parallel plane are Nθr1dφ and Nθ

+r1 dφ.

N �
r d

d
1

�
�

N
�
r  d1 �

d /2�

d /2�

N
�
r  d1 �

+

(  ) Horizontal planea

N �
r

d
d

co
s

1
�

�

�

N r d d
� 1 �����

�

(  ) Vertical planeb

Fig. 18.4

Their radial inward component

1 12 2

d d
N r d N r d+
q q

q q
= f + f

 = Nθr1dφ dθ
[After neglecting small quantity of higher order]

∴ Its component in φ-direction = − Nθr1 cos φ dφ dθ (Ref. Fig. 18.4(b))

(c) Nφθ forces − no component.

(d) Component of Nθφ forces:

1 1

N
N r d N d r d

qf
qf qf

∂Ê ˆ
= - f + + q fÁ ˜Ë ¯∂q

1

N
r d d

qf∂
= ◊ q f

∂q
(e) Component of load:

0 1Y r r d d= q f
∴ Equation of equilibrium is

( )0 1 1 0 1cos 0
N

N r N r r Yr r
qf

f q
∂∂

- f + + =
∂f ∂q

...eqn. 18.4
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3. Equation of Equilibrium of forces in z-direction
(a) Component of Nθ forces:
From Fig. 18.5(a), it is clear that, there is a component Nθr1dφ dθ in the horizontal plane. From
Fig. 18.5(b), it is clear that, the component in z-direction

= Nθr1dφ dθ sinφ.

N r d d
� 1 �����

N r d d sin

� 1 �
�

�

�

�

N r d
� 1 �

d /2�

d /2�

N
�
r  d1 �

+

N �
r d

d
1

�
�

(  )a (  )b

Fig. 18.5

(b) Component of Nφ forces in z-direction.
Referring to Fig. 18.6, we find component of Nφ forces in z-direction

0
0 02 2

N rd d d
N r d N d r d

f
f f

∂Ê ˆ ∂f q fÊ ˆ= q ◊ + + f + fÁ ˜ Á ˜∂f ∂fË ¯ Ë ¯

N
�
r  d0 �

N
� r d

d
0

�
�

�

d /2�

N
�
r  d0 �

+

d /2�

Fig. 18.6
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= Nφr0dφ dθ
[Small quantities of higher order neglected]

(c) Nθφ and Nφθ have no components.
(d) Component of external load:

= Z r0r1dθdφ
∴ The equation of equilibrium is

Nθr1 sinφ + Nφr0 + Z r0r1 = 0

or
0 1

sin
0

NN
Z

r r
fq f

+ + =

Since, r0 = r2 sinφ, we get,

1 2

0
N N

Z
r r
f q+ + = ...eqn. 18.5

Thus, the equations of equilibrium are:

( ) cosq
fq qf

∂ ∂
+ + f + =

∂q ∂f1 0 1 0 1
N

r r N r N r r X 0

( ) cos
qf

f q
∂∂

- f + + =
∂f ∂q0 1 1 0 1

N
r N r N r r r Y 0 ...eqn. 18.6

.f q+ + =
1 2

N N
Z 0

r r

18.3 EQUATIONS OF EQUILIBRIUM FOR AXI-SYMMETRICALLY LOADED SHELLS
When in addition to the symmetry of forms, shells of revolution are subjected to axi-symmetrical loads,
then,

(i) The forces are independent of θ i.e. all terms involving differentiation w.r.t. θ will vanish. Thus,

 Nθ
+ = Nθ

 Nθφ
+ = Nθφ

(ii) Shearing forces cannot exist, because if they exist there will be variation of forces in φ direction
as well as in θ-direction. But due to symmetry Nθ cannot vary. Hence,

 Nθφ = Nφθ = 0.
(iii) Due to symmetry load component X = 0. Hence, the forces on the element are as shown in

Fig. 18.7.
There are only two forces Nφ and Nθ. They can be found by writing equations of equilibrium in

φ-direction and Z-direction.
1. ∑ ∑ ∑ ∑ ∑ Forces in φφφφφ-direction = 0:

(a) Component of Nφ forces:

0
0 0

N r
N r d N d d r d

f
f f

∂Ê ˆ ∂Ê ˆ- q + + f q + fÁ ˜ Á ˜∂f ∂fË ¯ Ë ¯
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N
�

N
�

d�

r0

D

A

B

CN
�

+ N
�

+

r2

�

d�

Fig. 18.7

0
0

N r
r d d N d d

f
f

∂ ∂
= f q + f q

∂f ∂f

( )0r N d df
∂= f q
∂f

(b) Component of Nθ forces: Referring to Fig. 18.4, component of Nθ forces

1 cosN r d dq= - f f q .

(c) Load component

0 1Yr r d d= q f .

∴ The equation of equilibrium is,

( )0 1 0 1cos 0r N r N r r Yf q
∂ - f + =
∂f ...eqn. 18.7

2. ∑ Forces in Z-direction = 0:
As derived in Art 18.2.3, this equation is

1 2

0
N N

Z
r r
f q+ + = ...eqn. 18.8

18.4 SOLUTION OF EQUATIONS OF EQUILIBRIUM
By solving equations 18.7 and 18.8, the membrane forces Nθ and Nφ can be found.
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From eqn. 18.8,

2
2

1

r
N Zr N

rq f= - -

Substituting it is eqn. 18.7, we get,

( )0 1 2 2 0 1cos cos 0r N Zr r N r r r Yf f
∂ + f + f + =
∂f

Multiplying each term by sinφ, we get,

( )0 1 2 2 0 1sin cos sin cos sin sin 0r N Zr r N r r r Yf f
∂ ¥ f + f f + f f + f =
∂f

Noting that r0 = r2 sinφ, we get,

( ) ( )0 0 1 2sin cos cos sin sinr N N r r r Z Yf f
∂ ¥ f + f = - f + f f
∂f

i.e. ( ) ( )0 1 2sin cos sin sinr N r r Z Yf
∂ f = - f + f f
∂f

( )0 1 2sin cos sin sinr N r r Z Y d Cf f = - f + f f f +Ú
i.e. ( )2

2 1 2sin cos sin sinr N r r Z Y d Cf f = - f + f f f +Ú

i.e.           ( )1 22
2

1
cos sin sin

sin
N r r Z Y d C

r
f

È ˘= - f + f f f +Î ˚f Ú
To get physical meaning for it, let us multiply numerator and denominator by 2π.

         ( )1 22
2

1
2 sin cos sin

2 sin
N r r Y Z d C

r
f

È ˘= - p f + f f f +Î ˚p f Ú ...eqn. 18.9

where C is new arbitrary constant.

Elemental strip at �

N

�

�

90
�

�

N
� r2

r0

�

Fig. 18.8
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A simple physical meaning of the above equation is possible. Referring to Fig. 18.8, the term
2πr1r2 sinφ dφ stands for the surface area of an elemental strip of the shell. The term (Y sinφ + Z cosφ)
stands for the vertical component of the forces per unit area acting on this elemental strip. Hence, the
term 2πr1 r2 sinφ(Y sinφ + Z cosφ) stands for the vertical load acting on the strip. The integral ∫2πr1r2

sinφ (Y sinφ + Z cosφ)dφ represents the vertical load on the shell upto the level where the meridian angle
is φ.

2πr2 sin2φ Nφ represents the vertical component of Nφ acting around the circle of latitude φ. Thus, the
equation 18.9 is nothing but a mathematical statement of the vertical equilibrium of portion of shell
above the parallel circle at φ. Hence, it can be stated as

2
22 sin

W
N

r
f = -

p f ...eqn. 18.10

where W is the total vertical load acting on the dome above the level denoted by φ.
The constant of integration C can be made use of to account for concentrated load, if any, applied

at the crown or as a ring load above this level. If no such concentrated load exists, C = 0.

Example 18.1. Determine the membrane forces in a hemispherical shell subjected to self weight only.

Solution. Let the self weight per unit area be ‘g’ and radius of shell be ‘a’. [Ref. Fig. 18.9(a)]
Area of shell above φ

0
0

2a d r
f

= b pÚ

0

2 sina a d
f

= ◊ p ◊ b ◊ bÚ

r0

g

d�

�
�

a

�ga/2

�ga ga

�ga/2

(  ) Variation of Nb
� (  ) Variation of Nc

�

a

(  )a

Fig. 18.9

[ ]2
0

2 cosa
f= p - b

( )22 1 cosa= p - f
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Total vertical downward load above the level of φ is

  [ ]22 1 cosw a g= p - f

( )2

0

2 1 cos

2 sin

a g
N

rf
p - f

= -
p f

( )2

2

2 1 cos

2 sin

a g

a

p - f
= -

p f
, since r0 = a sinφ

( )
2

1 cos

1 cos

ga - f
= -

- f

1 cos

ga= -
+ f

...(Ans.)

To find Nθ,
Z = g cosφ

∴ From the equation of equilibrium,

1 2

cos 0,  we get,
N N

g
r r
f q+ + f =

( ) cos 0
1 cos

Nga
g

a a
q- + + f =

+ f
[Since r1 = r2 = a for a spherical shell]

∴
1

cos
1 cos

N a gq
Ê ˆ= ◊ ◊ - fÁ ˜+ fË ¯ ...(Ans.)

The variations of Nφ and Nθ forces for a hemispherical shell are as shown in Fig. 18.9(b) and 18.9(c).

Example 18.2. Determine membrane forces in a hemispherical shell due to concentrated load at crown
only.

Solution. Let P be the concentrated load at crown and ‘a’ be the radius of hemispherical shell.
∴ The vertical equilibrium of the shell above the parallel circle at φ gives,

22 sin

P
N

a
f = -

p f ...(Ans.)

Then, to find Nθ, we know Z = 0 for this loading.

∴ 0 0.
N N

a a
f q+ + =

i.e. 22 sin

P
N N

a
q f= - =

p f ...(Ans.)

Example 18.3. Determine the membrane forces in a hemispherical shell due to snow load only.
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Solution. Let snow load be p0 per unit horizontal area of shell surface. Hence, the total load upto the
circle of latitude φ is,

 W = p0 πr0
2

    = p0 π a2 sin2φ

∴ 2
02 sin 2 sin

W W
N

r a
f = - = -

p f p f

2 2
0

2

sin

2 sin

p a

a

p f
= -

p f

2
ap a

= - ...(Ans.)

Now, intensity of load on surface at φ

0
0

1
cos

1
cos

p
p

¥
= = f

f

∴  0 cos cosZ p= f ◊ f
2

0 cosp= f
∴ From the equation of equilibrium,

1 2

0,  we get,
N N

Z
r r
f q+ + =

20
0 cos 0

2

p a N
p

a
q- + + f =

�

a

(  )a

� P0
a
2 � P0

a
2

� P0
a
2

�P0
a
2

(  ) Variation of Nb
�

(  ) Variation of Nc
�

Fig. 18.11

Fig. 18.10

�

1

1
co

s�
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20

0 cos
2

p a
N p a

aq
Ê ˆ

= - - f ¥Á ˜Ë ¯¥

( )20 1 2cos
2

ap
= - f

0 cos2
2

p a
= + f ...(Ans.)

The variation of membrane forces are shown in Fig. 18.11.

18.5 MEMBRANE ANALYSIS OF CONICAL SHELLS
Referring to Fig. 18.12, it is clear that φ cannot be taken as a coordinate. Let the base angle be α. Taking
‘s’ which is the distance from the apex to the point under consideration, as a coordinate, we note,

 φ = α
r0 = s cos α

S

� �

r0

r
2

�

�

Fig. 18.12 Conical Shell

  r1 = α, and
  r2 = s cot α

∴
02 sinS
W

N
r

= -
p f

     
2 cos sin

W

s
= -

p a a ...eqn. 18.11

and 0.
cot

SN N
Z

s
q+ + =

a a

∴ cotN Zsq = - a ...eqn. 18.12

Example 18.4. Find the membrane forces in the umbrella type conical shell shown in Fig. 18.13.
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S

r0

�

�

r
2

g cos    = g cos� �

g

L

Fig. 18.13

Solution. Load below a horizontal section at a distance ‘s’ from apex

                   2 cos
L

S

W s ds g= p ◊ aÚ

2

2 cos
2

L

S

s
g
È ˘

= p aÍ ˙
Î ˚

( )2 2 cosg L S= p - a

∴  

2 cos sinS
W

N
s

= +
p a a

( )2 2 cos

2 cos sin

g L S

S

p - a
= +

p a a

( )2 2

2 sin

g L S

S

-
= +

a
...(Ans.)

Now   Z = g cos α. (Ref. Fig. 18.13)

∴  Nθ = −Zs cot α
= −g cos α ⋅ s ⋅ cot α
= −gs cos α ⋅ cot α ...(Ans.)
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18.6 ROTATIONAL HYPERBOLOID OF ONE SHEET
This type of shells are commonly used as cooling towers in thermal stations. If a hyperbolic curve is
rotated about a vertical axis, passing through the pole, such shells are generated.

Figure 18.14 shows a typical rotational hyperboloid of one sheet.

a

b

�0

�

r  axis0

r 1

r2

r0

O

�

z-axis

Fig. 18.14

with r0 and z-axis selected as shown in Fig. 18.14, the equation of hyperbola is

2 2
0
2 2

1
r z

a b
- =

i.e.
2

0 2
1

z
r a

b
= + ...eqn. 18.13

The principal radii of curvatures r1 and r2 are given by,

( )( )
( )

3 22

1

1 f z
r

f z

È ˘¢+Î ˚=
¢

...eqn. 18.14

and r2 = f(z)[1 + (f′(z))2]1/2 ...eqn. 18.15
where                    f (z) = r0
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Now,                 ( )
2

0 2
1

z
f z r a

b
= = +

∴       ( )
2

0
22 2

2 2

2
1

2
1 1

z
r a zbf z a
z bz z

b b

∂¢ = = - = -
∂

+ +

2

2
0

a z

rb
= -

             
( )

2

2 3 22 2

2 2

1 2
1 2

1 1

z
a bf z z

b z z
b b

-È ˘
Í ˙

¢¢ = - +Í ˙
Í ˙Ê ˆ

+ +Í ˙Á ˜Ë ¯Î ˚

2 2

2 2

2 3 22

2

1

1

z z
a b b

b z

b

È ˘
+ -Í ˙

Í ˙= -
Í ˙Ê ˆ
Í ˙+Á ˜Ë ¯Í ˙Î ˚

2 3 22
0
2

1a

b r

a

= -
Ê ˆ
Á ˜Ë ¯

4

2 3
0

a

b r
= -

∴                    
( )
( )

3 22
2

1

1 f
r

f z

È ˘¢+Î ˚=
¢¢

( )

3 24 4

4 3
0

4 2 3
0

1
a z

b r

a b r

È ˘
+Í ˙

Í ˙Î ˚=
-

3 22 4 4
3
04 4 3

0

1
b a z

r
a b r

È ˘
= - +Í ˙

Í ˙Î ˚
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3 222 4
6 0

4 4 4

rb z
a

a a b

È ˘
= - ¥ +Í ˙

Î ˚

3 22 4
2 2 0

4 4

r z
a b

a b

È ˘
= - +Í ˙

Î ˚
...eqn. 18.16

                   ( ) ( )( )
1 22

1zr f z f zÈ ˘¢= +Î ˚

1 24 2

0 4 2
0

1
a z

r
b r

È ˘
= +Í ˙

Í ˙Î ˚

1 22 2
2 0

4 4

r z
a

a b

È ˘
= +Í ˙

Î ˚
...eqn. 18.17

From eqns. 18.16 and 18.17, we get,

                   
2

3
1 24

b
r r

a
= - ...eqn. 18.18

The equation of hyperbola (Eqn. 18.13) may be rewritten as

                    
2 2
0

b
z r a

a
= -±

∴                  ( ) 1 22 2
0 0

0

1
tan 2

2

z b
r a r

r a

-∂ = f = - ¥
∂

( )
0

1 22 2

rb

a r a
=

-

∴                
( )1 22 2

0

0

cot
r aa

b r

-
f = ±

∴              
( )2 22 2 2

02
2 2 2 2

0 0

cot 1
r aa a a

b r b r

Ê ˆ-
f = = -Á ˜

Ë ¯

        

2 2
2

2 2
0

cot 1
b a

a r
f = -

∴                 

2 2 2 2 2 2
2

2 2 2 2
0

sin cos
1 cot

sin

a b a b

r a a

f - f= - f =
f
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4 2

2
0 2 2 2 2

sin

sin cos

a
r

a b

f=
f - f

or                 ( )
2

0 1 22 2 2 2

sin

sin cos

a
r

a b

f=
f - f

...eqn. 18.19

But                 0 2 sinr r= f

Hence,                 ( )
2

0
2 1 22 2 2 2sin sin cos

r a
r

a b
= =

f f - f
...eqn. 18.20

and                 ( )
2 2 2

3
1 24 3 22 2 2 2sin cos

b a b
r r

a a b
= - = -

f - f
...eqn. 18.21

After noting the above geometric relations of hyperbola, it is possible to analyse the rotational
hyperboloid of one sheet for any type of loading.

Example 18.5. Analyse a typical rotational hyperboloid of one sheet subjected to self weight g/unit
surface area and find the membrane forces.

Solution. Let W be the total load of the shell above level φ. Then,

0

0 12W g r r d
f

f

= p fÚ

( )
( )

( )
0 2 2 2

1 2 3 22 2 2 2 2 2 2 2

sin
2

sin cos sin cos

a b a
g d

a b a b

f

f

f -= p f
f - f f - f

Ú

( )
0

4 2
22 2 2 2

sin
2

sin cos
ga b d

a b

f

f

f
= - p f

f - f
Ú

Let us substitute,           
2 2

cos .
a

a b
f = x

+

then      
2 2

sin .
a

d d
a b

- f f = x
+

∴               
0

4 2
22 2 2 2

2 2 2 2
2 2 2 2

2

1

a d
W ga b

a b a a
a b

a b a b

f

f

x= p
È ˘+ Ê ˆ

- x - xÍ ˙Á ˜Ë ¯+ +Î ˚

Ú
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05 2

4 22 2 2 2
2

2 2

1
2

1

a b d
g

aa b a b

a b

f

f

x= p ¥
Ê ˆ+ +- xÁ ˜Ë ¯+

Ú

( )
02

22 2 2

2

1

g ab d

a b

f

f

p x=
+ - x

Ú

0

2

22 2

2 1 2 1
log

4 11

g ab

a b

x

x

p x + xÈ ˘= ¥ +Í ˙- x- x+ Î ˚

( ) ( )
2

02 22

g ab
f f

a b

p È ˘= x - xÎ ˚
¥ +

where          ( ) 2

2 1
log

11
f

x + xx = +
- x- x

∴            
02 sin

W
N

rf = - p f

( ) ( )
2

02 2
0

1

4 sin

g ab
f f

ra b
È ˘= - x - xÎ ˚f+

Now,         r0 sinφ = r2 sin2 φ

( )
2 2

1 22 2 2 2

sin

sin cos

a

a b

f=
f - f

2
2 2

2 2

1 2
2 2

2 2 2 2
2 2 2 2

1

1

a
a

a b

a a
a b

a b a b

È ˘
- xÍ ˙

+Î ˚=
È ˘Ê ˆ

- x - xÍ ˙Á ˜Ë ¯+ +Î ˚

( )2 2 2 2 2 2 2

1 22 2
2

2 2
1

a a b a a b

a b
a

a b

È ˘+ - x +Î ˚=
È ˘+- xÍ ˙

+Î ˚

( )
( )( )

2 2 2 2

1 22 2 21

a a b a

a b

+ - x
=

+ - x
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∴
( )( )
( ) ( ) ( )

1 22 2 22

02 2 2 22 2

1

4

a bg ab
N f f

a a b aa b
f

+ - x È ˘= - x - xÎ ˚+ - x+

     ( ) ( ) ( )
2

2 2 2
02 2 2 2

1

4

g
b a b f f

a b a

- x È ˘= - + x - xÎ ˚+ - x
...eqn. 18.22

To find Nθ;

1 2

cos
N N

g
r r
f q+ = - f

         
2

2
1

cos
r

N gr N
rq f= - f -

          ( )
2

2 1 22 2 2 2sin cos

a
r

a b
=

f - f

            ( )( ) ( )

2 2

1 2 1 2
2 2 2 2 2 2 2 21 cos cos cos

a a

a b a a b
= =

È ˘- f - f - + fÎ ˚

but           ( )2 2 2 2cosa b a2+ f = x

∴          ( ) ( )
2

2 1 2 1 22 2 2 21

a a
r

a a
= =

- x - x

         
2

3
1 24

b
r r

a
= -

           ( )
2 3

4 3 221

b a

a
= - ¥

- x

           ( )
2

3 221

b

a

-=
- x

∴       
2

2
1

cos
r

N gr N
rq f= - f -

           ( ) ( )
( )3 22

1 2 1 2 22 22 2
1

1 1

a a a a
g N

ba b
f= - ◊ x + ¥ - x

+- x - x
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( )
( )

2 2
2

1 2 22 2 2
1

1

ga a
N

ba b
f

x= - + - x
+ - x

...eqn. 18.23

Equations 18.22 and 18.23 give the membrane forces.

To prove,
( )

log :
x x + xÈ ˘= = +Í ˙- x- xÎ ˚- x

Ú 2 22

d 1 2 1
I

4 111

Let,   ξ = sinθ
dξ = cosθ dθ

 
3

4 3

cos 1
sec

cos cos

d
I d d

q q= = q = q q
q qÚ Ú Ú

2sec sec d= q ◊ q ◊ qÚ
( )tan sec

d
d

d
= q ◊ q ◊ q

qÚ
= secθ tanθ − Ú tanθ ⋅ secθ tanθ dθ

= secθ tanθ − Ú secθ (sec2θ − 1) dθ

= secθ tanθ − Ú sec3θdθ + Ú secθ dθ

i.e. 2I = secθ tanθ + Ú secθ dθ

∴  ( )1
sec tan log sec tan

2
I È ˘= q q + q + qÎ ˚

2

1 sin 1 sin
log

2 cos coscos

È ˘q qÊ ˆ= + +Á ˜Í ˙Ë ¯q qqÎ ˚

2 2

1 1
log

2 1 1

x + xÈ ˘= +Í ˙- x - xÍ ˙Î ˚

2

1 1
log

2 1 1 1

x + xÈ ˘= +Í ˙- x - x ¥ + xÎ ˚

2

11
log

2 1 1

È ˘+ xx= +Í ˙
- x - xÍ ˙Î ˚

2

1 1 1
log

2 2 11

x + xÈ ˘= +Í ˙- x- xÎ ˚

2

1 2 1
log .

4 11

x + xÈ ˘= +Í ˙- x- xÎ ˚
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QUESTIONS

1. Derive the equations of equilibrium for a shell of revolution, neglecting bending of the element.
2. A shell of revolution is subjected to symmetrical load. Considering membrane theory, determine the equations

of equilibrium. Bring out physical meaning for the expression Nφ.
3. Determine the membrane forces in a hemispherical dome subject to

(i) Self weight ‘g’ per unit area
(ii) Snow load ‘p’ per unit projected area.

4. Determine membrane forces in an inverted umbrella type conical shell supported centrally and subjected to self
weight only. Assume uniform thickness.



Membrane Theory for
Shells of Translation

Elliptic paraboloid, hyperbolic paraboloid and conoids are doubly curved shells generated by transla-
tion of one curve over the other. In this chapter, membrane theory of such shells is dealt.

19.1 ASSUMPTIONS
In developing the membrane theory, the following assumptions are made:

1. The thickness of the shell is small compared to other two dimension. In other words, the shell is
treated as thin i.e. the stresses normal to shell surface are ignored.

2. The deformation is small compared to the thickness of the shell i.e. stresses in the middle surface
are assumed zero.

3. Points on lines normal to the middle surface before deformation remain on the same normal even
after deformation. In other words, shear deformations are ignored.

4. The material of the shell is homogeneous, isotropic and linearly elastic.
5. The thickness of the shell is uniform.

19.2 COORDINATE AXES
The curvilinear coordinates may be convenient to generate the geometry of the shell. But use of the
consequent equations to satisfy the boundary conditions at the rectangular boundaries encountered in
practice is very difficult. Hence, the cartesian coordinates are used. Right hand system of cartesian
coordinates are used. Figure 19.1 shows a typical element in space and its projected element in x-y
plane.

19.3 MONGE’S NOTATIONS
The surface is represented by z = f (x, y). The following notations are used to write the equations
conveniently. These notations are known as Monge’s notations:

,
z z

p q
x y

∂ ∂= =
∂ ∂

2 2 2

2 2
, ,

z z z
r s t

x yx y

∂ ∂ ∂= = =
∂ ∂∂ ∂ ...eqn. 19.1

Chapter

19
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Fig. 19.1 Typical Element and Coordinate direction

19.4 PROPERTIES OF THE ELEMENT
Let at A,

tx – Tangent to the surface in x-direction
ty – Tangent to the surface in y-direction
φ – Angle between tx and x-direction
ψ – Angle between ty and y-direction
θ – Interior surface angle
dsx – Surface length of element in x-direction
dsy – Surface length of element in y-direction
dx – Projection of dsx on x-y plane
dy – Projection of dsy on x-y plane.
Referring to Figure 19.2,

dsx

dz

dx

Fig. 19.2 Side AB of element in x-z plane

∴ 2 2 2
xds dx dz= +

2 2
xds dx dz= +

     
2

1
dz

dx
dx

Ê ˆ= + Á ˜Ë ¯

    21dx p= + ...eqn. 19.2
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Similarly,

  2 2
yds dy dz= +

       21dy q= + ...eqn. 19.3

2

1
cos

1x

dx

ds p
f = =

+
...eqn. 19.4

2

1
cos

1y

dy

ds q
y = =

+
...eqn. 19.5

cos sin sinq = f ◊ y

2 21 cos 1 cos= - f - y

2 2

1 1
1 1

1 1p q
= - -

+ +

2 2

2 21 1

p q

p q
=

+ +

2 21 1

pq

p q
=

+ +
...eqn. 19.6

Surface area of the element
   dA = dsx dsy sinθ

2 2 21 1 1 cosdx p dy q= + + - q

( )( )
2 2

2 2
2 2

1 1 1
1 1

p q
dx dy p q

p q
= + + -

+ +

( )( )
( )( )

2 2 2 2
2 2

2 2

1 1
1 1

1 1

p q p q
dx dy p q

p q

+ + -
= + +

+ +

2 21dx dy p q= + + ...eqn. 19.7

19.5 MEMBRANE ANALYSIS
Let the membrane forces in the element be Nx, Ny and Nxy.

In the analysis, it is convenient to use the components of membrane forces parallel to the axes x and
y, imagined to act on the projected surface in x-y plane. These forces are called pseudo forces and they
are denoted by ‘n’ with suitable suffixes. Thus, the pseudo stress resultant nx is such that it exert the
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same force in the x-direction on the projected side A′D′ as the membrane force does on side AD. Figure
19.3 shows the membrane forces and pseudo forces.

Nx

Nxy

N xy

Ny

Nx
+

Nxy
+

Nyx
+

Ny
+

nx

nxy

nyx

ny

nx
+

nxy
+

nyx

+

ny
+

x

y

z

0

A

B

C

D

A� B�

C�
D�

Fig. 19.3 Membrane and Pseudo forces

Relationship between Pseudo and Membrane Forces:
1. Nx and nx forces:

Normal force on AD = Nx dsy

Its component in x-direction = Nx dsy cosφ
From the definition of pseudo force,

cosx x yn dy N ds= f

or   cos
y

x x

ds
n N

dy
= f

      
1

cos
cosxN= ◊ f

y

      
2

2

1
1

1
xN q

p
= + ¥

+
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i.e.  

2

2

1

1
x x

q
n N

p

+
=

+
...eqn. 19.8

Similarly,  

2

2

1

1
y y

p
n N

q

+
=

+
...eqn. 19.9

2. nxy and Nxy  forces:
Shear force on AD = Nxy dsy

Its component in y-direction = Nxy dsy cos ψ. According to the definition of the pseudo forces, this
must be equal to nxydy.

∴ nxy dy = Nxy dsy cosψ

i.e.   cos
y

xy xy

ds
n N

dy
= y

       
1

cos
cosxyN= ◊ y

y
i.e. nxy = Nxy ...eqn. 19.10
Similarly, nyx = Nyx ...eqn. 19.11
But nxy = nyx

∴ Nxy = Nyx ...eqn. 19.12

Pseudo Loads:
The pseudo loads X, Y, Z in the directions x, y and z are so defined that

       Real Load × Surface area of the element
= Pseudo load × Projected area of the element.

Hence, if Fx, Fy and Fz are intensity of load components on the element in x, y and z directions,
then, according to the definition of pseudo load,

2 21xF p q dx dy X dx dy+ + =

Thus, 2 21xX F p q= + +

Similarly, 2 21yY F p q= + + ...eqn. 19.13

2 21zZ F p q= + +

Equations of Equilibrium
Referring to the projected element A′B′C′D′,
∑ Forces in x-direction = 0, gives

0
yxx

x x yx yx

Nn
n n dx dy n n dy dx X dx dy

x y

∂Ê ˆ∂Ê ˆ- + + - + + + =Á ˜ Á ˜Ë ¯∂ ∂Ë ¯
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i.e. 0xyx
nn

X
x y

∂∂
+ + =

∂ ∂ ...eqn. 19.14

∑ Forces in y-direction = 0, gives

0.
y xyn N

y
y x

∂ ∂
+ + =

∂ ∂ ...eqn. 19.15

∑ Forces in z-direction = 0:
To assemble this equation, the components of various forces in z-direction are to be found.
Vertical component of N

 = Nx dsy sin φ, But from definition of pseudo forces Nx dsy cos φ = nx dy

sin
cosx

dy
n= f

f
= nx tanφ dy

Similarly, vertical component of Ny = ny tanψ dx
vertical component of Nxy = nxy tanψ dy
and vertical component of Nyx = nyx tanφ dx
Net vertical force of Nx - forces

( )tan tanx xn dy n dy
+= - f + f

( )tan tan tanx x xn dy n dy n dx dy
x

∂= - f + f + f
∂

( )tanxn dxdy
x

∂= f
∂

Similarly,

net vertical force due to Ny forces ( )tanyn dx dy
y

∂= y
∂

net vertical force due to Nxy forces ( )tanxyn dx dy
x

∂
= y
∂

net vertical force due to Nyx forces ( )tanyxn dx dy
y

∂= f
∂

∴ The equation of equilibrium is,

( ) ( ) ( )tan tan tanx y xyn n n
x y x

∂ ∂ ∂f + y + y
∂ ∂ ∂

( )tan 0yxn Z
y

∂+ f + =
∂

But tan    and   tan
z z

x y

∂ ∂f = y =
∂ ∂

.
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∴ Equation of equilibrium is,

0x y xy yx
z z z z

n n n n Z
x x y y x y y x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + + =Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

i.e.
2 2

2 2

y xyx
x y

n nn z z z z z
n n

x x y y x yx y

∂ ∂∂ ∂ ∂ ∂ ∂ ∂◊ + + + + ◊
∂ ∂ ∂ ∂ ∂ ∂∂ ∂

2 2

0
yx

xy yx

nz z z
n n Z

x y y x x y

∂∂ ∂ ∂+ + ◊ + + =
∂ ∂ ∂ ∂ ∂ ∂

Since, nxy = nyx, we get,

2 2 2

2 2
2x xy y

z z z
n n n

x yx y

∂ ∂ ∂+ +
∂ ∂∂ ∂

          0
xy y xyx

n n nnz z
Z

x x y y y x

∂ ∂ ∂Ê ˆ Ê ˆ∂∂ ∂
+ + + + + =Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

But from equation 1,

xyx
nn

X
x y

∂∂
+ = -

∂ ∂
and from equation 2,

y xyn n
Y

y x

∂ ∂
+ = -

∂ ∂
∴   The equation of equilibrium is

∴ -x xy yrn + 2sn + tn = pX + qY Z ...eqn. 19.16

19.6 PUCHERS STRESS FUNCTION
In 1934, Pucher introduced a stress function φ so as to reduce the three equations of equilibrium in three
unknowns, namely nx, ny and nxy, to one equation of equilibrium in only one unknown φ. The stress
function φ is so defined that,

2

xyn
x y

∂ f= -
∂ ∂

Then from Eqn. 19.14,

3

2
xn

X
x x y

∂ ∂ f= -
∂ ∂ ∂

or   
2

2xn X dx
y

∂ f= -
∂ Ú
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From equation 19.15,

3

2

yn
Y

y x y

∂ ∂ f= -
∂ ∂ ∂

∴   
2

2yn Y dy
x

∂ f= -
∂ Ú

Substituting these valuation in Eqn. 19.16, we get,

2 2 2

2 2
2r X dx S t Ydy

x yy x

Ê ˆ Ê ˆ Ê ˆ∂ f ∂ f ∂ f- + - + -Á ˜Á ˜ Á ˜ Ë ¯∂ ∂Ë ¯∂ ∂Ë ¯Ú Ú

pX qY Z= + -

or
2 2 2

2 2
2r S t pX qY Z r Xdx t Ydy

x yy x

∂ f ∂ f ∂ f- + = + - + +
∂ ∂∂ ∂ Ú Ú ...eqn. 19.17

19.7 SYNCLASTIC, DEVELOPABLE AND ANTICLASTIC SHELLS

If r, s and t are curvatures, the principal curvatures 
1 2

1 1
 and 

R R
are given by

2
2

1

1

2 2

r t r t
s

R

+ -Ê ˆ= + +Á ˜Ë ¯

2
2

2

1

2 2

r t r t
s

R

+ -Ê ˆ= - +Á ˜Ë ¯

∴
2 2

2 2

1 2

1 1

2 2 2 2

r t r t r t r t
s s

R R

Ï ¸Ï ¸Ô ÔÔ Ô+ - + -Ê ˆ Ê ˆÌ ˝Ì ˝¥ = + + - +Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÔ ÔÓ ˛Ó ˛

            
2 2

2

2 2

r t r t
s

Ï ¸Ô Ô+ -Ê ˆ Ê ˆÌ ˝= - +Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛

            2rt s= -
A shell is synclastic, developable or anticlastic according as

    
2

1 2

1
0.rt s

R R
£= - > ...eqn. 19.18

19.8 MEMBRANE THEORY OF SYNCLASTIC SHELLS
Among synclastic shells, rotational paraboloid and the elliptic paraboloid are the two surfaces most
frequently favoured roofs to cover very large column free rectangular or square areas.
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When a convex parabola moves over another convex parabola or when a concave parabola moves
over another concave parabola elliptic paraboloid surface is generated. If both parabolas are identical
the surface generated is known as rotational paraboloid. The vertical sections of an elliptic paraboloid
are parabolas while the horizontal sections are ellipses. Hence, the surface has the name elliptic parabo-
loid. The vertical sections of rotational paraboloid are parabolas while the horizontal sections are
circles.

A shell roof in the form of an elliptic paraboloid or rotational paraboloid over a rectangular or square
ground plan area is usually supported by shear diaphragm on all the four edges (Refer Figure 19.4). The
diaphragm are assumed to be stiff enough in their own planes to receive the shell but they cannot carry
any load applied normal to their plane. In other words, the diaphragm provide simple support to the
shell.

0 x

z
y

fy

2b

a a
fx

Fig. 19.4 Elliptic Paraboloid

The surface of the shell is mathematically represented by
Z = f1(x) + f2(y)

where f1(x) is the equation of the parabola in x-direction and f2(y) is the equation of the parabola in
y-direction.
If the origin is selected at the crown of the shell (Refer Figure 19.4),

                 ( ) ( )2 2
1 22 2

 and .
yx

ff
f x x f x y

a b
= =

∴ The equation of surface of shell is

                                 2 2
2 2

yx
ff

z x y
a b

= + ...eqn. 19.19
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∴ 2

2 xfz
p x

x a

∂= =
∂ ...(a)

2

2 yfz
q y

y b

∂= =
∂ ...(b)

2

2 2

2 xfz
r

x a

∂= =
∂

...(c)
...eqn. 19.20

2

0
z

s
x y

∂= =
∂ ∂ ...(d)

and
2

2 2

2 yfz
t

y b

∂
= =
∂ ...(e)

Membrane Analysis for Snow Load
Puchers equation for the shell is

2 2 2

2 2
2r s t pX qY Z Xdx Ydy

x yy x

∂ f ∂ f ∂ f
- + = + - + +

∂ ∂∂ ∂ Ú Ú
For snow load X = Y = 0 and Z = p0

Hence, Pucher’s equation reduces to

2 2

02 2 2 2

22 yx
ff

p
a y b x

∂ f ∂ f+ = -
∂ ∂

Particular integral may be assumed as,

2
2

1 04 x

a
p y

f
f = - ...eqn. 19.21

Homogeneous solution may be written as

2 2

2 2 2 2

22
0

yx
ff

a y b x

∂ f ∂ f
+ =

∂ ∂
Seeking the solution in the form
φ2 = X Y, where X is the function of x only and Y is the function of y only,

we get, 2 2

22
0.

yx
ff

Y X YX
a b

¢¢ ¢¢+ =

i.e. 2 2

y x
f fX Y

X Yb a

¢¢ ¢¢
= -

i.e.                   
2

2

y

x

f a X Y

f X Yb

¢¢ ¢¢
= -

¸
Ô
Ô
Ô
Ô
Ô
Ô
ÔÔ
˝
Ô
Ô
Ô
Ô
Ô
Ô
Ô
Ǫ̂
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The above relation holds good if and only if the right hand side and left hand side expressions are
equal to constant. Let the constant be λ2. Thus,

2
2

2

y

x

f a X Y

f X Yb

¢¢ ¢¢
= - = l .

It leads to two ordinary differential equations,
Y″ + λ2 Y = 0 ...(a)

and

2
2

2
0x

y

f b
X

f a
¢¢ - l = ...(b)

From equation (a),
   Y = cos λy

and from equation (b),

 cosh x

y

f b
X x

f a

Ê ˆ
= lÁ ˜

Ë ¯

    = cosh βx

where  
x

y

f b

f a
b = ◊ ◊ l

Keeping in mind that 
2

2yN
x

∂ f=
∂

 is to be zero at y = ±b, we try a solution in the form

2
1,3,...

cosh cos .m n n
n

A x y
•

=
f = - b ◊ lÂ ...eqn. 19.22

where  and 
2 2

x
n n

y

fn b n

b f a b

p pl = b = ◊
2

x

y

f n

f a

p= .

∴ The total solution is

 
2

2
0cosh cos

4m n n
x

a
A x y p y

f
f = -Â b ◊ l - ...eqn. 19.23

Hence, the expressions for the pseudo stress resultants are:

2 2
2

02
1,3,...

cosh cos
2x n n n n

xn

a
n A x y p

fy

•

=

∂ f= = l b l -
∂

Â

2
2

2
cosh cosy n n n nn A x y

x

∂ f= = -Â b b l
∂ ...eqn 19.24

2

sinh sinxy n n n n nn A x y
x y

∂ f= - = -Â b l b l
∂ ∂

¸
Ô
Ô
Ô
Ô
˝
Ô
Ô
Ô
Ǫ̂
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Because the traverses cannot receive any load normal to their planes, the boundary conditions to be
satisfied are

nx = 0 at x = ±a ...(1)
and ny = 0 at y = ±b. ...(2)

Boundary condition (2) is automatically satisfied, since, at y = ±b, sin λny = 0. Boundary condition
(1) helps in finding An. To apply this boundary condition, it is necessary to expand the uniform load p0

in Fourier series form in the y-direction. Thus, we take,

( )
1

0 20
1,3,...

4
1 cos

n

n
n

p
p y

n

• -

=
= - l

pÂ
Then from boundary condition (1), we get

 ( )
2 1

2 0 2
4

0 cosh cos 1 cos
2

n

n n n n n
x

pa
A a y y

f n

-
= Â l b l - Â - l

p

For all values of n,

( )
2 1

2 0 2
4

cosh cos 1 cos
2

n

n n n n n
x

pa
A a y y

f n

-
l b l = - l

p

∴   
( )

1
2 20

2

2 1

cosh

n

n
m x n

p a
A

f n a

-
-

=
l p b

...eqn. 19.25

Hence,

  ( )
2 1

0 2
cosh cos2 1

1
cosh 2

n
n n

x
x n

p a x y
n

f n a

-Ï ¸b lÔ Ô= Â - -Ì ˝p bÔ ÔÓ ˛

  ( )
2 1

0 2
cosh cos2

1
cosh

n
n n

y
y n

p b x y
n

f n a

-Ï ¸b ◊ lÔ Ô= - Â -Ì ˝p bÔ ÔÓ ˛
...eqn. 19.26

 
( )

1
0 2

sinh sin2
1

cosh

n
n n

xy
nx y

p ab x y
n

n af f

-Ï ¸b ◊ lÔ Ô= - Â -Ì ˝p bÔ ÔÓ ˛

The corresponding membrane stresses may be found by using the following relations:

2

2

1

1
x x

p
N x n

q

+=
+

2

2

1

1
y y

q
N n
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...eqn. 19.27

and  xy xyN n= .
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Convergence Study
Parme A.L. reported the following convergence study:
nx and ny converge rapidly and hence, three to four terms of the series give satisfactory accuracy.
However, the expression for shear converge rather slowly at x = ±a. To force nxy to converge rapidly, the
following recommendations has been made.

            
( )

1
0 2

sinh sin2
1

cosh

n
n n

xy x a
nx y

p ab a y
n

n af f

-

=

Ï ¸b lÔ Ô= - Â -Ì ˝p bÔ ÔÓ ˛

( )
1

2 sinh2 1
1 1 sin

cosh

n

a n
n

nx y

p ab a
y

n af f

-È ˘Ï ¸Ô Ôb- È ˘Í ˙Ì ˝= - Â - + lÍ ˙Í ˙p bÔ ÔÎ ˚Ó ˛Î ˚

However,   
( )

1
2

2

1,3,...

1 1
sin log sec tan

4 2 2

n

n
n

y y
y

n b b

-
•

=

- p pÊ ˆl = +Á ˜Ë ¯Â

∴                  0
1

log sec tan
2 2 2xy

x y

ab y y
n p

b bf f

È p pÊ ˆ= - +Á ˜Í Ë ¯pÎ

                  ( ) ( )
1

22 1
1 tanh sin

n

n na y
n

- ˘
- ˙- Â - b l ˙p ˚

For values 1, tanh 1x
n

y

f
a

f
> b =  and hence, the second term in the expression may be ignored except

perhaps for n = 1.

At y = ±b, sec  and tan
2 2

y y

b b

p p
 are infinite. Hence, it indicates nxy at the corner is infinite. This would

be true, if the corners were completely free of normal forces and if the shell had no bending resistance.
However, because of the integral action of the supporting ribs and shell, normal forces do exist at the
corner. These normal forces alter the resistance to the extent that, the shear does not need to be infinite
to satisfy statics. Moreover at the corner some of the load can be and is resisted by flexural resistance.

From the studies made on cylindrical shells, it has been found that this flexural action is confined to a

distance of approximately 0.4 rt from the rib, in which r is the radius of curvature of the shell and t

is the thickness. Therefore, it is felt that the expression for shear do not apply within the distance

0.4 rt from the corner. Shear can be considered maximum at the point 0.4 .y b rt= -

19.9 MEMBRANE THEORY OF ANTICLASTIC SHELLS
Hyperbolic paraboloid and conoid are the commonly used anticlastic shells.

19.9.1 Hyperbolic Paraboloid
Geometry: If a convex parabola moves over a concave parabola or vice versa, a hyperbolic paraboloid
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is generated. Vertical sections of the surfaces are paraboloid and the horizontal sections are hyperbolas.
Figure 19.5 shows a typical H.P. shell.
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Fig. 19.5 Hyperbolic Paraboloid

Let the parabolas used be

2
1 2

xfz x
a

=

2
2 2

.
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z y
b

=

The geometry of the shell is defined by

2 2
1 2 2 2

yx
ff

z z z x y
a b

= - + = - + .

                 
2

0
z

x y

∂ =
∂ ∂

 i.e. x and y are principal directions

∴                     
2

2 2
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21 xfz

R x a

∂= =
∂
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2 2
2

21 yfz

R y b

∂= =
∂
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where R1 and R2 are the principal curvatures. Thus, in terms of principal curvatures, the surface may
be defined as

2 2

1 22 2

x y
z

R R
= - + ...(a)

setting z = 0, we get

1 2 1 2

0
2 2 2 2

x y x y

R R R R

Ê ˆ Ê ˆ+ - + =Á ˜ Á ˜Ë ¯ Ë ¯
...(b)

Equation (b) represents a pair of straight lines existing on the surface. Their inclination to x-axis is
given by (Ref. Figure 19.6).

2

1

tan
R

R
g = .

�

�

Fig. 19.6

If R2 = R1, tan γ = 1 or γ = 45°. Hence, the angle between two pairs of straight lines is 90° i.e. they
are orthogonal. Such surfaces are known as rectangular hyperbolic paraboloid.

If the asymptotes are chosen as coordinate axes (Ref. Figure 19.7), let x′, y ′ be the coordinate system.
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x axis�
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Fig. 19.7
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Then looking at point A,
x = OC = BD − BE

= x′ cos γ − y′ cos γ
= (x′ − y′) cos γ

y = AC = OE + AD
= y′ sin γ + x′ sin γ
= (x′ + y′) sin γ

∴ Equation of hyperbolic paraboloid with respect to asymptotic axes is,

  
( ) ( )2 22 22 2

1 2 1 2
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2 2 2 2

x y x yx y
z

R R R R
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( ) ( )2 2 22

2 1

1
cos sin

2

R
x y x y

R R

È ˘¢ ¢ ¢ ¢= - - g + + gÍ ˙
Î ˚

( ) ( )2 22 2 2

2

1
cos tan sin

2
x y x y

R
È ˘¢ ¢ ¢ ¢= - - g g + + gÎ ˚

( ) ( )2 2 2

2

1
sin

2
x y x y

R
È ˘¢ ¢ ¢ ¢= - - + + gÎ ˚

2

2

2
sinx y

R
¢ ¢= + g

For rectangular hyperbolic paraboloid γ = 45°.

∴  
1

.z x y
R

¢ ¢= -

Looking at Fig. 19.8, it may be visualised as surface made up of straight line generaters. Then

a

b

fx
a f

Fig. 19.8
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x y

Z f
a b

= ◊

   
f xy

xy
ab c

= =

where 
ab

c
f

=  is radius of curvature.

Analysis of Hyper Shells (Rectangular Hyperbolic Shells)
The shell surface is given by

 
 where .

xy ab
z c

c f
= =

,
z y z x

p q
x c y c

∂ ∂= = = =
∂ ∂

 

2 2

2

1
0, 0.

z z
r s t

x y c y

∂ ∂= = = = =
∂ ∂ ∂

Hence, the equation of equilibrium reduces to
2s nxy = −Z + pX + qY

For self wt:

2 20, 0, 1X Y Z g p q= = = + +

∴                 
2 2

2 2

1
2 1xy

x y
n g

c c c
= - + +

                    
2 2

2 2
1

2xy
gc x y

n
c c

= - + +

   2 2 2

2

g
c x y= - + +

From equation of equilibrium 1,

                   ( ) 1 22 2 21
2

2 2
xyx

nn g
y c x y

x y

-∂∂
= - = + ◊ ¥ + +

∂ ∂

   2 2 22

g y

c x y
=

+ +

∴                      2 2 2
.

2x

y dxg
n C

c x y
= +

+ +

Ú
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( )2 2 2
1log

2

gy
x c x y f yÈ ˘= + + + +Î ˚

From equation of equilibrium 2,

                
( )

2 2 2

2

2 2

y xyn n g x

x x c x y

∂ ∂ -= - = -
∂ ∂ + +

( )2 2 2
2log

2

gx
y c x y f xÈ ˘= + + + +Î ˚

f1(y) and f2(x) are to be evaluated from the boundary conditions.
Umbrella Roof: Figure 19.9 shows a typical umbrella type H.P. Shell.

b

b

x

z
y

Fx

a a

Fig. 19.9 A typical umbrella type H.P. Shell

End beams are thin and deep.
∴ nx = 0 at x = a
and ny = 0 at y = b.

∴ ( ) 2 2 2
1 log

2

gy
f y a c a yÈ ˘= - + + +Î ˚

( ) 2 2 2
2 log

2

gx
f x b c x bÈ ˘= - + + +Î ˚

∴     

2 2 2

2 2 2
log

2x

x c x ygy
n

a c a y

+ + +
=

+ + +

    

2 2 2

2 2 2
log

2y

y c x ygx
n

b c x b

+ + +
=

+ + +
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For a shallow shell:
p2 and q2 are negligible compared to unity. Hence,

    2 21Z g p q g= + + =
∴ Equation of equilibrium is

1
2 xyn g

c
¥ = -

∴
2xy
gc

n = -

nx = 0 and ny = 0.

Thus, a shallow shell subjected to dead load only is in a state of pure shear.
Shallow and Deep shell

For a deep shell,

2 2 2

2xy
g

n c x y= - + +

    
2 2

2
1

2

gc x y

c

Ê ˆ+
= - + Á ˜Ë ¯

∴                 
2 2

2max
1

2xy
gc a b

n
c

È ˘+
= - +Í ˙

Î ˚

    
2 2

2

1
1 ...

2 2

gc a b

c

È ˘+= - + +Í ˙
Î ˚

    
2 2

2

1
1

2 2

gc a b

c

È ˘+
= - +Í ˙

Î ˚

Let a ≤ b, so that 1
a

b
£

Hence,
2 2 2 2

2 2 2

2

2
2

a b a b

c a b

f

+ +=

2 2

2 2
1

2

a f

b a

Ê ˆ1
= +Á ˜Ë ¯  

2 2

2

1
 since 1

2

f a

a b2£ <

Thus, if
2 2

2

1 1
,

10 1002

f a b

a c

+= £

or 1 percent of first term.



286 THEORY OF PLATES AND SHELLS

Again, if 
2 2

2

1 1
,  of first term

5 252

f a b

a c

+
= £

i.e. less than 4% of first term.

Hence, for all practical purpose, a H.P. shell may be considered shallow, if 
f

a
 is less than or equal

to
1

.
5

Example. Design a 10 m × 12 m invested umbrella type H.P. shell.

A E B

F

C

H

D

I

G

Fig. 19.10

Figure 19.10 shows a typical invested umbrella type of H.P. Shell. In this shell,

a = 5 m and b = 6 m.

To make it shallow amount of pulling down of a corner is kept 
1 1

th to th
5 7

 of least dimension i.e.

‘a’. Hence, in this case,

f = 1m to
5

m.
7

Let it be 1m.

∴ Radius of curvature 
5 6

30 m.
1

ab
c

f

¥= = =

Thickness of the roof is kept between 
1 1

 to th
400 500

of radius of curvature. Thus,
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1 1

30 1000 to 30 1000 75 mm to 60 mm.
400 500

t = ¥ ¥ ¥ ¥ =

Let              t = 60 mm.

Loads:
Dead load = 0.060 × 1 × 1 × 25 = 1.5 kN/m2

Live load: In this case, slope of line joining springing point and the crown is 1

2 2

1
tan 10 .

5 6

-a = < ∞
+

∴ L.L = 0.75 kN/m2

 Let total load on shell (including finishing load) be 2.4 kN/m2.
Since, the shell is shallow, it is subjected to pure shear,

2.4 30
36 kN m.

2 2xy
gc

n
¥= - = - =

Pure shear produces tensile/compressive stresses in diagonal directions, the magnitude being the
same (36 kN/m).

∴ 236 1000
240 mm ,

150stA
¥= =

Using 8 mm diameter bars,

                
28

4spacing 1000 209 mm.
240

p ¥
= ¥ =

Provide 8 mm bars at 200 mm c/c. Actually these bars are required in the direction of tensile stresses
(45° to x axis) and distribution bars are required at 90° to that direction. In these directions, it is difficult
to bend the bars. Hence, usually reinforcement is provided in x and y directions in which bars are to be
straight. Provide 8 mm bars at 200 mm c/c in x and y directions so that the component of steel at 45°
is sufficient to take diagonal tension.

Design of Peripheral Edge Beam
Along the edges of the shell, thin but sufficiently deep edge beams are to be provided to take up shear
from the shell and transfer the load to columns. Figure 19.11(a) shows peripheral edge beams with the
load transferred by shell and Figure 19.11(b) shows the transfer of load by beams connecting peripheral
edge beam and columns. It may be noted that peripheral edge beams are subjected to tensile forces and
the beams connected to column are subjected to compressive stresses, the magnitude being same as
shear in the shell (36 kN/m).

Maximum tension in peripheral beam is at section B in 6 m  beam.

T = 36 × 6 = 216 kN.

2216 1000
1440 mm

150stA
¥

= = .

Provide 8 bars of 16 mm diameter.
Provide nominal shear reinforcement. Use same section for 5 m beams also.
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A E
B

(  ) Force on peripheral beama

H
F

I

(  ) Force on beam connecting peripheral beam and columnb

Fig. 19.11

Edge Beam Dimension
To control crack width, maximum permissible direct tension in M: 25 concrete = 1.3 N/mm2.

for M: 25 concrete,
280

11.
3 8.5

m = ª
¥

Hence, area of concrete required is

( )
216 1000

1.3
11 1 1440A

¥=
+ - ¥

  A = 151753 mm2.
Provide, 225 × 675 mm beams.

These edge beams should be connected to shell symmetrically so as to avoid bending.

Edge beam

Shell

Design of Beams Connecting Edge Beams and Column

Length of beam 2 26 1 6.00276 m.= + =
∴ Maximum compressive force = 36 × 6.00276

= 218.98 kN.
From architectural point of view, the size of beam is kept same as peripheral beam.

= 225 × 675 mm.
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Compressive stress in concrete

     
2218.98 1000

2.16 N mm .
150 675

¥= =
¥

Hence, concrete alone can resist it. Provide minimum reinforcement.

20.8
225 675 1215 mm .

100scA = ¥ ¥ =

Provide 6 bars of 16 mm diameter. Use same section for 5 m beams also.

225
225

675 mm 675 mm

Shell

8 of 16 � 6 of 16 �

Nominal

(  ) Peripheral edge beama

Nominal

(  )b

Fig. 19.12

The sections are shown in Figure 19.12.

19.9.2 Membrane Analysis of Conoid
Figure 19.13 shows a typical conoid. It may be generated by moving a straight line with one of its end
on a straight line and the other end on a plane curve, keeping the line parallel to itself on a projected
plane. The projected plane is known as director plane. The plane curve and the straight line are known
as directrices. The conoid is inefficient in transferring the load by membrane action near straight line
directrix. Hence, many times truncated conoids (Fig. 19.14) are used.
Geometry of Conoid: The plane curve used as a directrix may be circular, parabolic or catenary.
Accordingly the conoids are known as circular, parabolic and catenary conoids. Of these the commonly
used conoid is the parabolic.

The glazing provided at plane curve end may be vertical or inclined as shown in Fig. 19.15. In this
article, analysis is carried out for type–I parabolic conoid.
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Director plane

St. line director

f

B

Curved director

l

Fig. 19.13 A conoid Fig. 19.14 Truncated conoid

Type I conoid Type II conoid

Fig. 19.15 Types of Conoids

The equation of type–I parabolic conoid, with x, y, z, axes selected as shown in Figure 19.16.

2
2

2

4

4

f B x
z y

lB

Ê ˆ
= - -Á ˜Ë ¯

∴
2 2

2 2
2

4

4 2 4

z f B a B
p y y

x lB

Ê ˆ Ê ˆ∂= = - - = - -Á ˜ Á ˜Ë ¯ Ë ¯∂

2

8z f xy
q axy

y lB

∂= = =
∂

2

2
0

z
r

x

∂= =
∂

2

2

8z fy
s ay

x y lB

∂= = =
∂ ∂

2

2 2 2

8 8
 where 

z f f
t x ax a

y lB lB

∂= = = =
∂

Fig. 19.16 Geometry of Parabolic Conoid of type–I

y
z

0

f

B

l

x



MEMBRANE THEORY FOR SHELLS OF TRANSLATION 291

Analysis for Snow Load
All cross sections of shell are parabolas. For snow load parabola is a funicular shape. Hence, for snow
load the shell degenerates into a series of independent arches. In other words, nx = nxy = 0. Hence, the
equilibrium equation assumes the form

 tny = −p0

or 0
y

p
n

t
= -

i.e.
2

0
0 8y

x

plB
n p

f ax
= - = -

∴ An appropriate stress function is

( )0
0 log 1

p
x x

a
f = - -

Analysis for Dead Load
If dead load is g/unit surface area,

   2 20, 0, 1X Y Z g p q= = = + +

  ( )2 21
1

2
g p q
È ˘ª + +Í ˙Î ˚

i.e.

22 2
2 2 2 21 1

1
2 4 4 2

a B
Z g y a x y

È ˘Ê ˆÍ ˙= + ¥ - +Á ˜Ë ¯Í ˙Î ˚

  
4 2 2 4

2 2 2 22 1
1

8 16 8 4 8 2

B B y y
g a a x y
È ˘Ï ¸

= + Ì - + + ˝Í ˙
¥ ¥Ó ˛Î ˚

  

2 4 4 2 2
2 2 21

1
8 16 8 16 2

a B y x y
g ga B y
È ˘ È ˘

= + + - +Í ˙ Í ˙¥Î ˚ Î ˚

  

2 4 4 2 2
2 2 2

2 4

64 1
1

8 16 8 16 2

f B y x y
g ga B y

l B

È ˘ È ˘
= + + - +Í ˙ Í ˙¥ Î ˚Î ˚

                        
2 4 2 2

2 2 2
2

1 1
1

2 8 16 2

f y x y
g ga B y

l

È ˘ È ˘
= + + - +Í ˙ Í ˙

Î ˚Î ˚
Hence, from equation of equilibrium, we get

2 4 2 2
2 2 2

2

1 1
2 1

2 8 16 2xy y
f y x y

an axn g ga B y
l

È ˘ È ˘
+ = - + - - +Í ˙ Í ˙

Î ˚Î ˚
The above equation in terms of the stress function φ is,



292 THEORY OF PLATES AND SHELLS

                 
2 2 2 4 2 2 2 2

2
2 2

1
2 1

2 8 16 2

f y B y x y
ay ax g ga

x y x l

È ˘ È ˘∂ f ∂ f
- + = - + - - +Í ˙ Í ˙∂ ∂ Î ˚∂ Î ˚

First part of the load term is constant and may be regarded similar to snow load. Hence, the solution
for the first part of load is

              ( )
2

1 2
1 log 1

2

g f
x x

a l

È ˘
f = - + -Í ˙

Î ˚
For the second part of the load let the stress function be φ2.

Hence,
2 2 4 2 2 2 2

22 2
2

2
8 16 2

y B y x y
ay ax ga

x y x

È ˘∂ f ∂ f
- + = - - +Í ˙∂ ∂ Î ˚∂

i.e.
2 2 4 2 2 2 2

2 2
2

2
8 16 2

y B y x y
y x ga

x y x

È ˘∂ f ∂ f
- + = - - +Í ˙∂ ∂ Î ˚∂

The above equation is satisfied by a stress function of the form

2
m n

mnA x yf =Â
or ( )

2
m m n

mnA x l yf = -Â
The latter form is preferred as it can be made to satisfy the boundary condition at x = l easily. Using

chosen stress function, we get,

( )
4 2 2

1 1 2 2 21
2 1

8 16 2
m n m n

mn mn
y x y

y A mn x y x A m m x y ga B y- - - È ˘
- + - = - - +Í ˙

Î ˚Â

i.e. ( )
4 2 2 2 2

1 2 1
8 16 2

m n
mn

y B y x y
A x y m n m ga- È ˘

- + - = - - +Í ˙
Î ˚

The values of Amn for each of the load term may be found seperately and total solution obtained.
For first term:

( )
4

1 2 1
8

m n
mn

y
A x y m n m ga- - + - = -

Comparing the powers of x and y, we get
m − 1 = 0   i.e.   m = 1

and n = 4.

∴ ( )1 2 4 1 1
8mn
ga

A ¥ - ¥ + - = -

or
64mn
ga

A =

∴ Solution for first term of load is

  ( ) ( )4 4
2 64 64

ga ga
x l y l x yf = - = - -
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Similarly for second term of load
    m = 1 and n = 2

∴ ( ) 21 2 2 1 1
16mn
ga

A B¥ - ¥ + - =

or ( ) 2

64mn
ga

A x l B= - -

Hence,   ( ) ( )2 2 2 2
2 64 64

ga ga
x l B x y l x B xyf = - - = -

For third term of load,
    m = 3 and n = 2.

∴ ( ) 1
3 2 2 3 1

2mnA ga¥ - ¥ + - = -

or
1

12mnA ga= ¥

  ( )3 3 2
2 12

ga
x l yf = -

      ( )3 3 2 .
12

ga
l x y= - -

∴ The solution is,

  ( ) ( ) ( )
2

4 2 3 3 2
2 64 64 12

ga gaB ga
l x y l x y l x yf = - - + - - -

The total solution for self weight is

 1 2f = f + f

    ( ) ( ) ( ) ( )
2

4 2 3 3 2
2

1 log 1
64 64 122

g f ga gaB ga
x x l x y l x y l x y

a l

2È ˘
= - + - - - + - - -Í ˙

Î ˚

( ) ( ) ( )
2 2

2 3 3
2

3 1

16 32 6x
B

n ga l x y l x l x
y

È ˘∂ f= = - - - - + -Í ˙
Î ˚∂

2 2
2

2 2
1

2 2
y

ga g f
n xy

axx l

È ˘∂ f= = - +Í ˙
∂ Î ˚

 
2 3 2 2

16 32 2xy
y yB x y

n ga
x y

È ˘∂ f
= - = - +Í ˙∂ ∂ Î ˚

It may be easily verified that the boundary conditions 0x x l
n

=
=  is satisfied. The boundary condition

nxy = 0 along y = 0 (due to symmetry) is also satisfied. Since, conoid is of hyperbolic type, no boundary
conditions may be prescribed on the edges x = ±B/2 which are (open boundaries).
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QUESTIONS

1. Explain the term ‘Pseudo forces’ and derive the relationship between pseudo forces and membrane forces. Use
Monge’s notations.

2. Derive the equations of equilibrium for the analysis of doubly curved shells. Use Pseudo forces and Puchers
stress function.

3. State the Pucher’s equation of equilibrium for the analysis of doubly curved shell. Derive membrane solution
for a shell subject to snow load only.

4. Find the membrane solution for a rectangular hyperbolic parabola subject to self weight only. Show that if the

ratio of the amount of pulling down of a corner to shorter side is less than or equal to 
1

5
, it may be treated as

shallow shell.
5. Design an inverted umbrella type H.P. shell to cover an area of 12 m × 15 m.
6. Differentiate between full conoid and truncated conoid and explain the relative merits and demerits. Discuss

the need for a bending theory of conoids.
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